【題目】如圖,在正方形網格中,每個小正方形的邊長為1,格點△ABC(頂點在網格線的交點上)的頂點A、C的坐標分別為A(﹣3,5)、C(0,3).
(1)請在網格所在的平面內畫出平面直角坐標系,并寫出點B的坐標.
(2)將△ABC繞著原點順時針旋轉90°得△A1B1C1,畫出△A1B1C1.
(3)在直線y=1上存在一點P,使PA+PC的值最小,請直接寫出點P的坐標.
科目:初中數學 來源: 題型:
【題目】某工程對承接了60萬平方米的綠化工程,由于情況有變,……,設原計劃每天綠化的面積為萬平方米,列方程為
,根據方程可知省略的部分是( )
A.實際工作時每天的工作效率比原計劃提高了20%,結果提前30天完成了這一任務
B.實際工作時每天的工作效率比原計劃提高了20%,結果延誤30天完成了這一任務
C.實際工作時每天的工作效率比原計劃降低了20%,結果延誤30天完成了這一任務
D.實際工作時每天的工作效率比原計劃降低了20%,結果提前30天完成了這一任務
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D為AC中點,點E在BD延長線上,且BD:DE=3:5,連接CE,tan∠BAC=,CB=
,則線段EC長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b(k≠0)的圖象與x軸,y軸分別交于A(﹣9,0),B(0,6)兩點,過點C(2,0)作直線l與BC垂直,點E在直線l位于x軸上方的部分.
(1)求一次函數y=kx+b(k≠0)的表達式;
(2)若△ACE的面積為11,求點E的坐標;
(3)當∠CBE=∠ABO時,點E的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=4cm,點P從點A出發以lcm/s的速度沿折線AC﹣CB運動,過點P作PQ⊥AB于點Q,當點P不與點A、B重合時,以線段PQ為邊向右作正方形PQRS,設正方形PQRS與△ABC的重疊部分面積為S,點P的運動時間為t(s).
(1)用含t的代數式表示CP的長度;
(2)當點S落在BC邊上時,求t的值;
(3)當正方形PQRS與△ABC的重疊部分不是五邊形時,求S與t之間的函數關系式;
(4)連結CS,當直線CS分△ABC兩部分的面積比為1:2時,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉90°后得到△AB′C′(點B的對應點是點B′,點C的對應點是點C′),連接CC′,若∠CC′B′=33°,則∠B的大小是( )
A. 33° B. 45° C. 57° D. 78°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC中,AC=BC,∠ACB=90°,點P為AB上一點(異于A、B),BD⊥直線CP于D,AE⊥直線CP于E,點F為AB的中點,連接DF.
(1)可以把△ACE繞點F逆時針旋轉 度(度數不超過180°)和△ 重合,則∠FDE= °.
(2)取CE的中點G,連接AD、FG,求證:AD=2FG.
(3)如圖2,AB=8,等腰直角△MNH的斜邊NH的中點也為點F,直線AM和直線CH交于點Q,連接BQ,當△MNH繞點F旋轉一周時,請直接寫出BQ長的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優秀傳統文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結果繪制成如圖所示的條形統計圖和扇形統計圖,但均不完整.
請你根據統計圖解答下列問題:
(1)參加比賽的學生共有____名;
(2)在扇形統計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;
(3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx﹣與y軸交于點C,與x軸交于點A(﹣1,0),B(3,0).
(1)求這個拋物線的解析式;
(2)將△AOC以每秒一個單位的速度沿x軸向右平移,平移時間為t秒,平移后的△A′O′C′與△BOC重疊部分的面積為S,A與B重合時停止平移,求S與t的函數關系式;
(3)點P在x軸上,連接CP,點B關于直線CP的對稱點為B′,若點B′落在這個拋物線的對稱軸上,請直接寫出所有符合條件的點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com