日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

已知:矩形OABC的頂點O在平面直角坐標系的原點,邊OA、OC分別在x、y軸的正半軸 上,且OA=3cm,OC=4cm,點M從點A出發沿AB向終點B運動,點N從點C出發沿CA向終點A運動,點M、N同時出發,且運動的速度均為1cm/秒,當其中一個點到達終點時,另一點即停止運動.設運動的時間為t秒.
(1)當點N運動1秒時,求點N的坐標;
(2)試求出多邊形OAMN的面積S與t的函數關系式;
(3)t為何值時,以△OAN的一邊所在直線為對稱軸翻折△OAN,翻折前后的兩個三角形所組成的四邊形為菱形?

解:(1)∵t=1∴CN=1,AM=1
過N作NE⊥y軸,作NF⊥x軸
∴△CEN∽△COA,∴,即,∴EN=
由勾股定理得:,∴

(2)由(1)得,∴
∴N點坐標為
∵多邊形OAMN由△ONA和△AMN組成
=
=
∴多邊形OAMN的面積S=
(0≤t≤4)


(3)①直線ON為對稱軸時,翻折△OAN得到△OA′N,此時組成的四邊形為OANA′,
當AN=A′N=A′O=OA,四邊形OANA’是菱形.
即AN=OA,∴5-t=3∴t=2.

②直線OA為對稱軸時,翻折△OAN得到△OAN′,
此時組成的四邊形為ONAN′,連接NN′,交OA于點G.
當NN′與OA互相垂直平分時,四邊形ONAN′是菱形.
即OA⊥NN′,OG=AG=
∴NG∥CO,∴點N是AC的中點,
∴CN=,∴

③直線AN為對稱軸時,翻折△OAN得到△O′AN,
此時組成的四邊形為ONO′A,連接OO’,交AN于點H.
當OO′與AN互相垂直平分時,四邊形ONO’A是菱形.
即OH⊥AC,AH=NH=
由面積法可求得OH=
在Rt△OAH中,由勾股定理得,AH=
,∴
綜上所述,t的值為
分析:(1)過N作NE⊥y軸,作NF⊥x軸,由△CEN∽△COA,利用相似比求EN,再用勾股定理求CE,確定N點坐標;
(2)將多邊形OAMN分為△ONA和△AMN,用t分別表示兩個三角形的面積,再求和即可;
(3)分為①直線ON為對稱軸,②直線OA為對稱軸,③直線AN為對稱軸,畫出圖形,根據菱形的特殊性,列方程求解.
點評:本題考查了相似三角形的判定與性質,菱形的性質,矩形的性質及折疊變換.關鍵是根據題意,結合圖形及特殊圖形的性質,運用勾股定理,相似三角形的性質解題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:矩形OABC的頂點O在平面直角坐標系的原點,邊OA、OC分別在x、y軸的正半軸 上,且OA=3cm,OC=4cm,點M從點A出發沿AB向終點B運動,點N從點C出發沿CA向終點A運動,點M、N同時出發,且運動的精英家教網速度均為1cm/秒,當其中一個點到達終點時,另一點即停止運動.設運動的時間為t秒.
(1)當點N運動1秒時,求點N的坐標;
(2)試求出多邊形OAMN的面積S與t的函數關系式;
(3)t為何值時,以△OAN的一邊所在直線為對稱軸翻折△OAN,翻折前后的兩個三角形所組成的四邊形為菱形?

查看答案和解析>>

科目:初中數學 來源:2012年天津市寶坻區中考數學一模試卷(解析版) 題型:解答題

已知:矩形OABC的頂點O在平面直角坐標系的原點,邊OA、OC分別在x、y軸的正半軸 上,且OA=3cm,OC=4cm,點M從點A出發沿AB向終點B運動,點N從點C出發沿CA向終點A運動,點M、N同時出發,且運動的速度均為1cm/秒,當其中一個點到達終點時,另一點即停止運動.設運動的時間為t秒.
(1)當點N運動1秒時,求點N的坐標;
(2)試求出多邊形OAMN的面積S與t的函數關系式;
(3)t為何值時,以△OAN的一邊所在直線為對稱軸翻折△OAN,翻折前后的兩個三角形所組成的四邊形為菱形?

查看答案和解析>>

科目:初中數學 來源:2011年北京市豐臺區中考數學二模試卷(解析版) 題型:解答題

已知:矩形OABC的頂點O在平面直角坐標系的原點,邊OA、OC分別在x、y軸的正半軸 上,且OA=3cm,OC=4cm,點M從點A出發沿AB向終點B運動,點N從點C出發沿CA向終點A運動,點M、N同時出發,且運動的速度均為1cm/秒,當其中一個點到達終點時,另一點即停止運動.設運動的時間為t秒.
(1)當點N運動1秒時,求點N的坐標;
(2)試求出多邊形OAMN的面積S與t的函數關系式;
(3)t為何值時,以△OAN的一邊所在直線為對稱軸翻折△OAN,翻折前后的兩個三角形所組成的四邊形為菱形?

查看答案和解析>>

科目:初中數學 來源:2011年河南省商丘市外國語中學中考數學模擬試卷(七)(解析版) 題型:解答題

已知:矩形OABC的頂點O在平面直角坐標系的原點,邊OA、OC分別在x、y軸的正半軸 上,且OA=3cm,OC=4cm,點M從點A出發沿AB向終點B運動,點N從點C出發沿CA向終點A運動,點M、N同時出發,且運動的速度均為1cm/秒,當其中一個點到達終點時,另一點即停止運動.設運動的時間為t秒.
(1)當點N運動1秒時,求點N的坐標;
(2)試求出多邊形OAMN的面積S與t的函數關系式;
(3)t為何值時,以△OAN的一邊所在直線為對稱軸翻折△OAN,翻折前后的兩個三角形所組成的四邊形為菱形?

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美日韩一区二区在线观看 | 日韩成人片 | 精品福利一区 | 玖玖视频在线 | 精品一二三 | 久久精品一二三 | 亚洲国产成人91精品 | 亚洲福利网| 中文字幕在线观看一区 | 日本色视频 | 国产永久视频 | 精品国产三级 | 国产亚洲一区二区三区 | 国产欧美久久久 | 永久免费看片在线播放 | 中文字幕日本在线 | 免费一级黄色录像 | 国产无精乱码一区二区三区 | www.日韩| 国语对白永久免费 | 亚洲一区在线视频 | 国产一级片免费 | 四虎入口 | 韩日一区二区 | 亚洲视频区 | 在线中文av | 国产免费一级片 | 九九国产精品视频 | 成人精品免费 | 欧美国产日韩视频 | 亚洲人在线观看 | 黄色一级免费 | 在线观看91| 天天视频国产 | 久久久精品| 亚洲天堂国产 | 国产视频www| 亚洲天天干 | cao在线 | 国产一区在线观看视频 | 午夜视频福利 |