日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】如圖ABCDEC都是等腰三角形,點C為它們的公共直角頂點,連AD、BE,F為線段AD的中點,連CF

1)如圖1,當D點在BC上時,BECF的數量關系是   

2)如圖2,把DECC點順時針旋轉90°,其他條件不變,問(1)中的關系是否仍然成立?請說明理由.

3)如圖3,把DECC點順時針旋轉一個鈍角,其他條件不變,問(1)中的關系是否仍然成立?如成立請證明,如果不成立,請寫出相應的正確的結論并加以證明.

【答案】1BE=2CF;(2)(1)中的關系是仍然成立,理由見解析;(3)(1)中的關系是仍然成立,理由見解析.

【解析】試題分析:(1)根據“SAS”證明△ACD≌△BCE,可得AD=BE,又因為AD=2CF,從而BE=2CF

(2)由點FAD中點,可得AD=2DF,從而AC= 2DF+CD,又由△ABCCDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2DF+CE),CF= DF+CD,從而BE=2CF;

(3)延長CFG使FG=CF,即:CG=2CF,可證△CDF≌△GAF,再證明△BCE≌△ACG,從而BE=CG=2CF成立.

解:(1∵△ABC是等腰直角三角形,

AC=BC

∵△CDE是等腰直角三角形,

CD=CE

ACDBCE中,,

∴△ACD≌△BCE,

AD=BE,在RtACD中,點FAD中點,

AD=2CF

BE=2CF,

故答案為BE=2CF;

2)(1)中的關系是仍然成立,

理由:∵點FAD中點,

AD=2DF

AC=AD+CD=2DF+CD,

∵△ABCCDE是等腰直角三角形,

AC=BC,CD=CE,

BC=2DF+CE

BE=BC+CE=2DF+CE+CE=2DF+CE),

CF=DF+CD=DF+CD

BE=2CF;

3)(1)中的關系是仍然成立,理由:如圖3,

延長CFG使FG=CF,即:CG=2CF

∵點FAD中點,

AF=DF,

CDFGAF中,,

∴△CDF≌△GAF

AG=CD=CE,CDF=GAF,

∴∠CAG=CAD+GAF=CAD+ADC=180°﹣ACD

∵∠ACB=DCE=90°,

∴∠BCE=360°﹣ACB﹣DCE﹣ACD=180°﹣ACD,

∴∠CAG=BCE

連接BE,

BCEACG中,

∴△BCE≌△ACG,

BE=CG=2CF

即:BE=2CF

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知點A、B、C是數軸上三點,O為原點.點C對應的數為6,BC4AB12

1)求點AB對應的數;

2)動點P、Q分別同時從AC出發,分別以每秒6個單位和3個單位的速度沿數軸正方向運動.MAP的中點,NCQ上,且CNCQ,設運動時間為tt0).

①求點M、N對應的數(用含t的式子表示); t為何值時,OM2BN

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對x,y定義一種新運算T,規定:T(x,y)=(其中a、b均為非零常數),這里等式右邊是通常的四則運算,例如:T(0,1)==b.

(1)已知T(1,﹣1)=﹣2,T(4,2)=1.

求a,b的值;

若關于m的不等式組 恰好有3個整數解,求實數p的取值范圍;

(2)若T(x,y)=T(y,x)對任意實數x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應滿足怎樣的關系式?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,將筆記本活頁一角折過去,使角的頂點A落在A處,BC為折痕;

1)圖①中,若∠130°,則∠ABD_____;

2)如果在圖中改變∠1的大小,則BA的位置也隨之改變,又將活頁的另一角斜折過去,使BD邊與BA重合,折痕為BE.那么∠CBE的度數是否會發生變化呢?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為弘揚中華傳統文化,黔南州近期舉辦了中小學生國學經典大賽,比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式為兩人對抗賽,即把四種比賽項目寫在4張完全相同的卡片上,比賽時,比賽的兩人從中隨機抽取1張卡片作為自己的比賽項目(不放回,且每人只能抽取一次)比賽時,小紅和小明分到一組.(1)小明先抽取,那么小明抽到唐詩的概率是多少?

2)小紅擅長唐詩,小紅想:小明先抽取,我后抽取抽到唐詩的概率是不同的,且小明抽到唐詩的概率更大,若小紅后抽取,小紅抽中唐詩的概率是多少?小紅的想法對嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:

1)﹣4.2+5.75.8+10

2)(﹣3×(﹣4)﹣60÷|12|

3

4)﹣14+[(﹣32﹣(122×2]

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經過B、C兩點.

(1)求拋物線的解析式;

(2)如圖,點E是直線BC上方拋物線上的一動點,當△BEC面積最大時,請求出點E的坐標;

(3)在(2)的結論下,過點Ey軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,P、Q是方格紙中的兩格點,請按要求畫出以PQ為對角線的格點四邊形.(頂點都在格點上的四邊形稱為格點四邊形)

1)在圖①中畫出一個面積最小的中心對稱圖形PAQB,

2)在圖②中畫出一個四邊形PCQD,使其是軸對稱圖形但不是中心對稱圖形,且另一條對角線CD由線段PQ以某一格點為旋轉中心旋轉得到.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,△ABC中,∠ABC90°,AB1,BC2,將線段BC繞點C順時旋轉90°得到線段CD,連接AD.

(1)說明△ACD的形狀,并求出△ACD的面積;

(2)把等腰直角三角板按如圖2的方式擺放,頂點ECB邊上,頂點FDC的延長線上,直角頂點與點C重合.A,B兩題中任選一題作答:

A .如圖3,連接DEBF,

猜想并證明DEBF之間的關系;將三角板繞點C逆時針旋轉α(0°<α<90°),直接寫出DEBF之間的關系.

B .將圖2中的三角板繞點C逆時針旋轉α(0<α<360°),如圖4所示,連接BEDF,連接點CBE的中點M,

猜想并證明CMDF之間的關系;CE1,CM時,請直接寫出α的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: av毛片| 亚洲在线观看免费视频 | 欧美视频在线观看不卡 | 亚洲精品乱码久久久久久按摩观 | 国产成人精品久久二区二区91 | 欧美成人精品一区二区三区 | 美日韩一区二区 | 丰满少妇久久久久久久 | ww8888免费视频 | 91精品国产综合久久久久久丝袜 | 最近韩国日本免费高清观看 | 在线日韩视频 | 久久久久久亚洲av毛片大全 | 久久婷婷麻豆国产91天堂 | 爱爱视频在线 | 亚洲欧洲一区二区三区 | 一本一道久久a久久精品综合蜜臀 | 狠狠躁夜夜躁人人爽天天天天97 | 国产日韩欧美综合 | 久久亚洲精品中文字幕蜜潮电影 | 国产欧美日韩综合精品 | 精品1区 | 欧美激情欧美激情在线五月 | 成人在线三级 | 精品久久影院 | 国产精品久久久久久久毛片 | gogo熟少妇大胆尺寸 | 中文字幕av一区二区三区 | 91超碰在线播放 | 在线精品一区 | 日韩国产精品视频 | 久久久国产一区二区三区 | 探花在线观看 | 精品久久一 | 国产精品视频一区二区三区, | 亚洲一区二区三区四区在线观看 | 午夜小电影 | 黄色网址免费观看 | 亚洲天天干 | 区一区二区三在线观看 | 欧洲精品乱码久久久久蜜桃 |