【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=1,下列結論:①2a+b=0;②9a+c>3b;③若點A(﹣3,y1)、點B(﹣,y2)、點C(
,y3)在該函數圖象上,則y1<y3<y2:④若方程ax2+bx+c=﹣3(a≠0)的兩根為x1和x2,且x1<x2,則x1<﹣1<3<x2;⑤m(am+b)﹣b<a.其中正確的結論有( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
根據對稱軸為x=1,再結合對稱軸公式即可判斷①;當x=﹣3時,y<0,代入即可判斷②;找出(,y3)關于直線x=1的對稱點即可判斷③;設y=ax2+bx+c,y=﹣3,根據圖象可判斷④;當x=1時,a+b+c為最大值,可判斷⑤.
解:①由題意可知:對稱軸x=1,
∴=1,
∴2a+b=0,故①正確;
②當x=﹣3時,y<0,
∴y=9a﹣3b+c<0,故②錯誤;
③(,y3)關于直線x=1的對稱點為(
,y3),
由圖可知:x<1時,y隨著x的增大而減小,
由于﹣3<<
,
∴y1<y3<y2,故③正確;
④設y=ax2+bx+c,y=﹣3,
由于圖象可知:直線y=﹣3與拋物線y=ax2+bx+c有兩個交點,
∴方程ax2+bx+c=﹣3(a≠0)的兩根為x1和x2,
∴x1<﹣1<3<x2,故④正確;
⑤當x=1時,y=a+b+c,此時a+b+c為最大值,
當x=m時,y=am2+bm+c,
∴am2+bm+c≤a+b+c,
即m(am+b)﹣b≤a,故⑤錯誤;
故選:C.
科目:初中數學 來源: 題型:
【題目】港珠澳大橋是世界上最長的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測得海豚塔斜拉索頂端A距離海平面的高度,先測出斜拉索底端C到橋塔的距離(CD的長)約為100米,又在C點測得A點的仰角為30°,測得B點的俯角為20°,求斜拉索頂端A點到海平面B點的距離(AB的長).(已知≈1.732,tan20°≈0.36,結果精確到0.1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣1(a≠0)交x軸于A,B(1,0)兩點,交y軸于點C,一次函數y=x+3的圖象交坐標軸于A,D兩點,E為直線AD上一點,作EF⊥x軸,交拋物線于點F
(1)求拋物線的解析式;
(2)若點F位于直線AD的下方,請問線段EF是否有最大值?若有,求出最大值并求出點E的坐標;若沒有,請說明理由;
(3)在平面直角坐標系內存在點G,使得G,E,D,C為頂點的四邊形為菱形,請直接寫出點G的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以點A為中心,把△ABC逆時針旋轉120°,得到△AB'C′(點B、C的對應點分別為點B′、C′),連接BB',若AC'∥BB',則∠CAB'的度數為( )
A.45°B.60°C.70°D.90°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(-4,n)、B(3,4)是一次函數y1=kx+b的圖象與反比例函數的圖象的兩個交點,過點D(t,0)(0<t<3)作x軸的垂線,分別交雙曲線
和直線y1=kx+b于P、Q兩點
(1) 直接寫出反比例函數和一次函數的解析式
(2) 當t為何值時,S△BPQ=S△APQ
(3) 以PQ為邊在直線PQ的右側作正方形PQMN,試說明:邊QM與雙曲線(x>0)始終有交點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O為△ABC的外接圓,D為OC與AB的交點,E為線段OC延長線上一點,且∠EAC=∠ABC.
(1)求證:直線AE是⊙O的切線.
(2)若D為AB的中點,CD=6,AB=16
①求⊙O的半徑;
②求△ABC的內心到點O的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年“519(我要走)全國徒步日(江夏站)”暨第六屆“環江夏”徒步大會5月19日在美麗的花山腳下降重舉行.組委會(活動主辦方)為了獎勵活動中取得了好成績的參賽選手,計劃購買共100件的甲、乙兩種紀念品發放.其中甲種紀念品每件售價120元,乙種紀念品每件售價80元.
(1)如果購買甲、乙兩種紀念品一共花費了9600元,求購買甲、乙兩種紀念品各是多少件?
(2)設購買甲種紀念品件,如果購買乙種紀念品的件數不超過甲種紀念品的數量的2倍,并且總費用不超過9400元.問組委會購買甲、乙兩種紀念品共有幾種方案?哪一種方案所需總費用最少?最少總費用是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平行四邊形ABCD中,E為BC邊上的一點.連結AE.
(1)若AB=AE, 求證:∠DAE=∠D;
(2)若點E為BC的中點,連接BD,交AE于F,求EF︰FA的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,對于點
和點
給出如下定義:若
,則稱點
為點
的限變點.例如:點
的限變點的坐標是
點
的限變點的坐標是
點
的限變點的坐標是
.
①點
的限變點的坐標是 ;
②在點中有一個點是雙曲線
上某一個點的限變點,這個點是(填“
”或“
”)
若點
在關于
的二次函數
的圖象上,其限變點
的縱坐標
的取值范圍是
或
其中
.令
,直接寫出
的值.
若點
在函數
的圖象上,其限變點
的縱坐標
的取值范圍是
,直接寫出
的取值范圍;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com