日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖1,在四邊形ABCD中,∠A=∠BCD=90度.
(1)過C作對角線BD的垂線,分別交BD,AD于點E,F,求證:CD2=DF•DA;
(2)如圖2,若過BD上另一點E作BD的垂線,分別交BA,BC的延長線于點F,G,又有什么結論呢?你會證明嗎?

證明:(1)∵∠DEF=∠DAB=90°,∠BDA=∠FDE,
∴△DEF∽△DAB,
∴DE:DA=DF:DB,
∴DE•DB=DA•DF,
∵∠DCB=∠DEC=90°,∠BDC=∠CDE,
∴△DEC∽△DCB,
=
∴DC2=DE•DB,
又∵DE•DB=DA•DF,
∴CD2=DF•DA.

(2)∵∠DEF=∠DAB=90°,∠ABD=∠EBF,
∴△DAB∽△FEB,
∴DB:FB=AB:EB,
∴BE•BD=AB•BF.
同理△DBC∽△GBE.
∴DB:GB=BC:BE.
∴BE•BD=BC•BG.
∴AB•BF=BC•BG.
分析:(1)根據如果兩個三角形的兩個對應角相等,那么這兩個三角形相似,可以證得△DCE∽△DBC,△DEF∽△DAB;根據相似三角形的對應邊成比例,即可證得.
(2)利用上題的方法,可以得到比例線段,將其變形,可得到等積式.
點評:此題考查了相似三角形的判定和性質:
①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;
③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.相似三角形的對應邊成比例,對應角相等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,E是AD上一點,EC∥AB,EB∥CD,若S△DEC=1,S△ABE=3,則S△BCE=
 
;若S△DEC=S1,S△ABE=S2,S△BCE=S,請直接寫出S與S1、S2間的關系式:
 

(2)如圖2,△ABC、△DCE、△GEF都是等邊三角形,且A、D、G在同一直線上,B、C、E、F也在同一直線上,S△ABC=4,S△DCE=9,試利用(1)中的結論得△GEF的面積為
 

精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

我們把既有外接圓又有內切圓的四邊形稱為雙圓四邊形,如圖1,四邊形ABCD是雙圓四邊形,其外心為O1,內心為O2
(1)在平行四邊形、矩形、菱形、正方形、等腰梯形中,雙圓四邊形有
 
個;
(2)如圖2,在四邊形ABCD中,已知:∠B=∠D=90°,AB=AD,問:這個四邊形是否是雙圓四邊形?如果是,請給出證明;如果不是,請說明理由;
(3)如圖3,如果雙圓四邊形ABCD的外心與內心重合于點O,試判定這個四邊形的形狀,并說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數量關系?請寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點M、N分別在DA、CD的延長線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數量關系?請直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(2013•咸寧)閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網格(網格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB和BC的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•東臺市二模)在四邊形ABCD中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一點,F是AB延長線上一點,且CE=BF.

思考驗證:
(1)求證:DE=DF;
(2)在圖1中,若G在AB上且∠EDG=60°,試猜想CE、EG、BG之間的數量關系并證明;
歸納結論:
(3)若題中條件“∠CAB=60°且∠CDB=120°”改為∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG滿足什么條件時,(2)中結論仍然成立?(只寫結果不要證明)
探究應用:
(4)運用(1)(2)(3)解答中所積累的經驗和知識,完成下題:如圖2,在四邊形ABCD中,∠ABC=90°,∠CAB=∠CAD=30°,E在AB上,DE⊥AB,且∠DCE=60°,若AE=3,求BE的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 大色欧美 | 91深夜视频| 国严精品久久久久久亚洲影视 | 日本一本不卡 | 成人一区在线观看 | 久久性 | 色播99| 99久久国产 | 九九色综合 | av大片| 区一区二区三在线观看 | 亚洲欧美一区二区三区国产精品 | 国产精品久久久久久久久久久久久 | 亚洲永久免费 | 欧美日韩成人免费 | 日韩久久久久久 | 亚洲一区二区三 | 一区二区福利 | 中文字幕av一区 | 久久久久国产一区 | 婷婷午夜激情 | 欧美蜜桃精品久久久久久 | 久久成人精品视频 | 久久久精品网站 | 欧美日韩精选 | 久久精品国产一区 | 一区二区亚洲视频 | 91精品国产综合久久久久久丝袜 | 黄色av网站在线播放 | 国产一区二区视频在线观看 | 亚州综合一区 | 在线 丝袜 欧美 日韩 制服 | 欧美日韩成人在线视频 | 99精品全国免费观看视频软件 | 成人看片免费 | 黄色网址进入 | heyzo在线观看 | 国产高清久久久 | 91精品国产乱码久 | 成人午夜精品久久久久久久蜜臀 | 中文字幕一级 |