
證明:(1)∵∠DEF=∠DAB=90°,∠BDA=∠FDE,
∴△DEF∽△DAB,
∴DE:DA=DF:DB,
∴DE•DB=DA•DF,
∵∠DCB=∠DEC=90°,∠BDC=∠CDE,
∴△DEC∽△DCB,
∴

=

,
∴DC
2=DE•DB,
又∵DE•DB=DA•DF,
∴CD
2=DF•DA.
(2)∵∠DEF=∠DAB=90°,∠ABD=∠EBF,
∴△DAB∽△FEB,
∴DB:FB=AB:EB,
∴BE•BD=AB•BF.
同理△DBC∽△GBE.
∴DB:GB=BC:BE.
∴BE•BD=BC•BG.
∴AB•BF=BC•BG.
分析:(1)根據如果兩個三角形的兩個對應角相等,那么這兩個三角形相似,可以證得△DCE∽△DBC,△DEF∽△DAB;根據相似三角形的對應邊成比例,即可證得.
(2)利用上題的方法,可以得到比例線段,將其變形,可得到等積式.
點評:此題考查了相似三角形的判定和性質:
①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;
③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.相似三角形的對應邊成比例,對應角相等.