日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖1,已知:拋物線y=ax2+bx-3與x軸交于A、B兩點,與y軸交于點C,頂點為D,對稱軸x=1與x軸交于點E,A(-1,0).
(1)求拋物線的函數(shù)解析式;
(2)在對稱軸上是否存在點P,使得以點A、B、C、P為頂點的四邊形是梯形?若存在,求出點P的坐標(biāo);若不存在,說明理由;
(3)在對稱軸上找點Q,使點Q到A、C兩點的距離之和最小,并求出Q點坐標(biāo).
精英家教網(wǎng)精英家教網(wǎng)
分析:(1)根據(jù)二次函數(shù)的對稱性得出B點坐標(biāo)為:(3,0),再利用待定系數(shù)法求二次函數(shù)解析式;
(2)分別根據(jù)若AB∥CP,若AC∥CP,若BC∥AP得出P點坐標(biāo)即可得出答案;
(3)利用相似三角形的判定,首先得出△BEQ∽△BOC,即可得出Q點的坐標(biāo).
解答:解:(1)∵A(-1,0),對稱軸x=1,拋物線y=ax2+bx-3與x軸交于A、B兩點,精英家教網(wǎng)精英家教網(wǎng)
精英家教網(wǎng)
∴B點坐標(biāo)為:(3,0),將A,B代入二次函數(shù)解析式得:
9a+3b-3=0
a-b-3=0

解得:
a=1
b=-2

∴y=x2-2x-3;

(2)有三種情況:
①若AB∥CP,如圖1,
∵y=x2-2x-3與y軸交于點C,∴C(0,-3),
∴PE=OC=3,
∵AB≠CP,
∴P(1,-3)符合題意;
②若AC∥BP,如圖2,
則∠CAO=∠EBP,
∵∠AOC=∠BEP=90°,
∴Rt△AOC∽Rt△BEP,
PE
OC
=
BE
OA

PE
3
=
2
1

解得:PE=6,
AC
BP
=
OA
EB
=
1
2

∴AC≠BP,∴P(1,6)符合題意;
③若BC∥AP,如圖3,
∵OB=OC=3,
∴∠PAE=∠CBO=45°,
∴PE=AE=2,
又∵AP≠BC,
∴P(1,2)符合題意,
綜上所述,點P的坐標(biāo)為(1,6)或(1,-3)或(1,2);

(3)∵A,B關(guān)于對稱軸x=1對稱,
∴BC與對稱軸x=1的交點即為所求的點Q,如圖4,
∵QE∥y軸,
∴∠BOC=∠BEQ=90°,
∵∠ABC是公共角,
∴△BEQ∽△BOC,
EQ
OC
=
BE
BO

即:
EQ
3
=
2
3

∴EQ=2,
∴Q(1,-2).
點評:此題主要考查了二次函數(shù)的綜合應(yīng)用以及與相似三角形的綜合應(yīng)用,根據(jù)已知進行分類討論是二次函數(shù)中的考查重點,同學(xué)們應(yīng)重點掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,已知:拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點,與y軸交于點C,經(jīng)過B、C兩點的直線是y=
1
2
x-2
,連接AC.
(1)寫出B、C兩點坐標(biāo),并求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)若△ABC內(nèi)部能否截出面積最大的矩形DEFG(頂點D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點的坐標(biāo);若不能,請說明理由.
{拋物線y=ax2+bx+c的頂點坐標(biāo)是(-
b
2a
4ac-b2
4a
)
}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知:拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點,與y軸交于點C,經(jīng)過B、C兩點的直線是y=
1
2
x-2,連接AC.
(1)B、C兩點坐標(biāo)分別為B(
 
 
)、C(
 
 
),拋物線的函數(shù)關(guān)系式為
 

(2)判斷△ABC的形狀,并說明理由;
(3)若△ABC內(nèi)部能否截出面積最大的矩形DEFC(頂點D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點的坐標(biāo);若不能,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知:拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點,與y軸交于點C,經(jīng)過B、C兩點的直線是y=
1
2
x-2
,連接AC.
(1)B、C兩點坐標(biāo)分別為B
(4,0)
(4,0)
、C
(0,-2)
(0,-2)
,拋物線的函數(shù)關(guān)系式為
y=
1
2
x2-
3
2
x-2
y=
1
2
x2-
3
2
x-2

(2)求證:△AOC∽△COB;
(3)在該拋物線的對稱軸上是否存在點P,使得△PAC的周長最小?若存在,請求出來,若不存在,請說明理由.
(4)在該拋物線上是否存在點Q,使得S△ABC=S△ABQ?若存在,請求出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期末題 題型:解答題

如圖1,已知:拋物線與x軸交于A,B兩點,與y軸交于點C,經(jīng)過B,C兩點的直線是,連結(jié)AC.
(1)寫出B,C兩點坐標(biāo),并求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)若△ABC內(nèi)部能否截出面積最大的矩形DEFG(頂點D,E,F(xiàn),G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點的坐標(biāo);若不能,請說明理由.
[拋物線的頂點坐標(biāo)是]

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 欧美日韩精品一区二区 | 国产女爽123视频.cno | 欧美一区二 | 色婷婷综合五月天 | 欧美日韩亚洲另类 | 成人精品一区二区三区中文字幕 | 在线播放国产一区二区三区 | 成人综合区 | 久久4 | 中文字幕视频 | 国产精品久久久久久亚洲影视 | 巨大黑人极品videos精品 | 亚洲女人天堂成人av在线 | www中文字幕 | 成人欧美一区二区三区在线播放 | 青青艹在线视频 | 成人激情综合 | 成人网18免费网站 | 精品久久久免费视频 | 久久亚洲一区二区三区四区 | 在线xxx| 一级毛片aaaaaa免费看 | 在线不卡日本 | 成人做爰www免费看视频网站 | 日韩视频在线观看一区 | 一级黄色大片在线 | 久久久女 | 国产精品视频导航 | 在线免费看污网站 | 午夜探花 | 欧美xxxx做受欧美 | 成人国产精品入麻豆 | www.日韩.com | 免费日韩| 爱爱网址| 国产特黄一级 | 91欧美在线 | 亚洲精品乱码久久久久久蜜桃不卡 | 欧美在线观看黄 | 密桃av| 精品久久久久久久 |