【題目】如圖,在中,
,
,
,
為邊
上一動點,
于點
,
于點
為
的中點,則
的最小值為( )
A.B.
C.
D.
【答案】D
【解析】
根據勾股定理的逆定理可以證明∠BAC=90°;根據直角三角形斜邊上的中線等于斜邊的一半,則AM= EF,要求AM的最小值,即求EF的最小值;根據三個角都是直角的四邊形是矩形,得四邊形AEPF是矩形,根據矩形的對角線相等,得EF=AP,則EF的最小值即為AP的最小值,根據垂線段最短,知:AP的最小值即等于直角三角形ABC斜邊上的高.
∵在△ABC中,AB=3,AC=4,BC=5,
∴AB+AC
=BC
,
即∠BAC=90°.
又∵PE⊥AB于E,PF⊥AC于F,
∴四邊形AEPF是矩形,
∴EF=AP.
∵M是EF的中點,
∴AM=EF=
AP.
因為AP的最小值即為直角三角形ABC斜邊上的高,得的最小值為
,
∴的最小值是
.
故選D.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點P從B點出發以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發,以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知三角形的一銳角α(45°<α<90°)的正弦和余弦分別是方程(m+5)x2﹣(2m﹣5)x+12=0的兩根,求:
(1)m的值;
(2)α的正弦值和余弦值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了從甲、乙兩名選手中選拔出一個人參加射擊比賽,現對他們進行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統計圖表.
甲、乙射擊成績統計表
平均數(環) | 中位數(環) | 方差 | 命中10環的次數 |
甲 | 7 | 0 | |
乙 | 1 |
甲、乙射擊成績折線統計圖
(1)請補全上述圖表(請直接在表中填空和補全折線圖);
(2)如果規定成績較穩定者勝出,你認為誰應勝出?說明你的理由;
(3)如果希望(2)中的另一名選手勝出,根據圖表中的信息,應該制定怎樣的評判規則?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題滿分8分)
如圖,點E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,⊙O的直徑AB與弦AC的夾角∠A=30°,AC=CP.
(1)求證:CP是⊙O的切線;
(2)若PC=6,AB=4 ,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形中,
是邊
上的一動點(不與點
、
重合),連接
,點
關于直線
的對稱點為
,連接
并延長交
于點
,連接
,過點
作
交
的延長線于點
,連接
.
(1)求證:;
(2)用等式表示線段與
的數量關系,并證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com