【題目】如圖,拋物線經過
,
兩點.
求拋物線的函數表達式;
求拋物線的頂點坐標,直接寫出當
時,x的取值范圍;
設點M是拋物線的頂點,試判斷拋物線上是否存在點H滿足
?若存在,請求出點H的坐標;若不存在,請說明理由.
科目:初中數學 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿對角線折疊,設重疊部分為△EBD,那么,有下列說法:①△EBA和△EDC一定是全等三角形;②△EBD是等腰三角形,EB=ED;③折疊后得到的圖形是軸對稱圖形;④折疊后∠ABE和∠CBD一定相等;其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將半徑為4,圓心角為90°的扇形BAC繞A點逆時針旋轉60°,點B、C的對應點分別為點D、E且點D剛好在上,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
小天在學習銳角三角函數中遇到這樣一個問題:在中,
,
,則
______
小天根據學習幾何的經驗,先畫出了幾何圖形如圖
,他發現
不是特殊角,但它是特殊角
的一半,若構造有特殊角的直角三角形,則可能解決這個問題
于是小天嘗試著在CB邊上截取
,連接
如圖
,通過構造有特殊角
的直角三角形,經過推理和計算使問題得到解決.
請回答:______.
參考小天思考問題的方法,解決問題:
如圖3,在等腰中,
,
,請借助
,構造出
的角,并求出該角的正切值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,若點P和點關于y軸對稱,點
和點
關于直線l對稱,則稱點
是點P關于y軸,直線l的二次對稱點.
如圖1,點
.
若點B是點A關于y軸,直線
:
的二次對稱點,則點B的坐標為______;
若點
是點A關于y軸,直線
:
的二次對稱點,則a的值為______;
若點
是點A關于y軸,直線
的二次對稱點,則直線
的表達式為______;
如圖2,
的半徑為
若
上存在點M,使得點
是點M關于y軸,直線
:
的二次對稱點,且點
在射線
上,b的取值范圍是______;
是x軸上的動點,
的半徑為2,若
上存在點N,使得點
是點N關于y軸,直線
:
的二次對稱點,且點
在y軸上,求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,且AB=4,點C在半圓上,OC⊥AB,垂足為點O,P為半圓上任意一點,過P點作PE⊥OC于點E,設△OPE的內心為M,連接OM、PM.當點P在半圓上從點B運動到點A時,內心M所經過的路徑長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a、b、c為常數且a≠0)中的x與y的部分對應值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結論:
(1)二次函數y=ax2+bx+c有最小值,最小值為﹣3;
(2)當﹣<x<2時,y<0;
(3)a﹣b+c=0;
(4)二次函數y=ax2+bx+c的圖象與x軸有兩個交點,且它們分別在y軸兩側
則其中正確結論的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=4.
(1)求拋物線的函數表達式.
(2)當t為何值時,矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=8厘米,AC=16厘米,點P從A出發,以每秒2厘米的速度向B運動,點Q從C同時出發,以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應停止運動,那么,當以A、P、Q為頂點的三角形與△ABC相似時,運動時間是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com