(1)如圖,在△ABC中,∠BAC=90°,AB=A C,點D在BC上,且BD=BA,點E在BC的延長線上,且CE=CA. 試求∠DAE的度數.
(2)如果把第(1)題中“AB=AC”的條件去掉,其余條件不變,那么∠DAE的度數會改變嗎?
(3)如果把第(1)題中“∠BA C=90°”的條件改為“∠BAC>90°”。其余條件不變,那么∠DAE與∠BAC有怎樣的大小關系? 并說明理由。
(1)45度(2)不改變(3)
解析:解:(1)∵AB=AC,∠BAC=90°
∴∠B=∠ACB=45° …………………………………………1′
∵AB=BD,AC=CE,
∴∠BAD=∠BDA,∠E=∠CAE
∴……4′
在△ABE中,∠BAE=180°-∠B-∠E=112.5°,
∴∠DAE=∠BAE-∠BAD=112.5°-67.5°=45度……………6′
(2)不改變.
設∠CAE=x,
∵CA=CE,
∴∠E=∠CAE=x,
∴∠ACB=∠CAE+∠E=2x,
在△ABC中,∠BAC=90°,
∴∠B=90°-∠ACB=90°-2x,
∵BD=BA,
∴∠BAD=∠BDA=(180°-∠B)=x+45°,
在△ABE中,∠BAE=180°-∠B-∠E,
=180°-(90°-2x)-x=90°+x,
∴∠DAE=∠BAE-∠BAD,
=(90°+x)-(x+45°)=45° ………………………………………7′
(3) ………………………………………8′
設∠BAC=α,因為
所以
= ………………………………………10′
(1)要求∠DAE,必先求∠BAD和∠CAE,由∠BAC=90°,AB=AC,可求∠B=∠ACB=45°,又因為BD=BA,可求∠BAD=∠BDA=67.5°,再由CE=CA,可求∠CAE=∠E=22.5°,所以∠DAE=∠BAE-∠BAD=112.5°-67.5°=45度;
(2)先設∠CAE=x,由已知CA=CE可求∠ACB=∠CAE+∠E=2x,∠B=90°-2x,又因為BD=BA,所以∠BAD=∠BDA=x+45°,再根據三角形的內角和是180°,可求∠BAE=90°+x,即∠DAE=∠BAE-∠BAD=(90°+x)-(x+45°)=45度;
(3)可設∠BAC=α,則 =
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com