【題目】如圖,在□ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H。
(1)求證:△BAE∽△BCF
(2)若BG=BH,求證四邊形ABCD是菱形
【答案】(1)略
(2)略
【解析】
證明(1)∵BE⊥AD,BF⊥CD
∴∠BEA=∠BFC=90° ………………(1')
又ABCD是平行四邊形,
∴∠BAE=∠BCF ……………………(2')
∴△BAE∽△BCF …………………………………………(3')
(2)∵△BAE∽△BCF
∴∠1=∠2 ……………………………………………(4')
又BG=BH ∴∠3=∠4
∴∠BGA=∠BHC ………………………………………………(5')
∴△BGA≌△BHC(ASA) ……………………………………(6')
∴AB=BC ……………………………………………………(7')
∴□ABCD為菱形……………………………………………(8')
科目:初中數學 來源: 題型:
【題目】已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C.
(1)如圖①,若∠P=35°,求∠ABP的度數;
(2)如圖②,若D為AP的中點,求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結論的是( )
A. ①③④B. ②④⑤C. ①③⑤D. ①③④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發,沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?
(參考數據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,
≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).
(1)求該拋物線所對應的函數解析式;
(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.
①求四邊形ACFD的面積;
②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當△AQD是直角三角形時,求出所有滿足條件的點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為提高學生參與體育活動的積極性,圍繞“你喜歡的體育運動項目(只寫一項)”這一問題,對初一新生進行隨機抽樣調查.下面是根據調查結果繪制成的統計圖(不完整).
請你根據圖中提供的信息解答下列問題:
(1)本次抽樣調查一共調查調查了多少名學生?
(2)根據條形統計圖中的數據,求扇形統計圖中“最喜歡足球運動”的學生數對應扇形的圓心角度數.
(3)請將條形圖補充完整.
(4)若該市2017年約有初一新生21000人,請你估計全市本屆學生中“最喜歡足球運動”的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有七張正面分別標有數字﹣1、﹣2、0、1、2、3、4的卡片,除數字不同外其余全部相同,現將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數字為m,則使關于x的方程x2﹣2(m﹣1)x+m2﹣3m=0有實數根,且不等式組無解的概率是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A(4,3)是反比例函數y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側),連接OB,交反比例函數y=
的圖象于點P.
(1)求反比例函數y=的表達式;
(2)求點B的坐標;
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如表:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離(千米)與時間
(分鐘)的函數關系用圖3表示,其中:“11:40時甲地‘交叉潮’的潮頭離乙地12千米”記為點
,點
坐標為
,曲線
可用二次函數
(
,
是常數)刻畫.
(1)求的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時,小紅騎單車從乙地出發,沿江邊公路以千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調轉車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為千米/分,小紅逐漸落后,問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度
,
是加速前的速度).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com