【題目】如圖,在由邊長為1個單位長度的小正方形組成的網格中,給出了格點△ABC(頂點是網格線的交點的三角形叫格點三角形),
(1)請畫出△ABC關于y軸對稱的格點△A1B1C1,
(2)請判斷△A1B1C1與△DEF是否相似,若相似,請寫出相似比;若不相似,請說明理由.
科目:初中數學 來源: 題型:
【題目】如圖(),在四邊形
中,
,
,
,
,
分別是
,
上的點,且
.探究圖中線段
,
,
之間的數量關系.小王同學探究此問題的方法是,延長
到點
,使
,連接
,先證明
≌
,再證明
≌
,可得出結論,他的結論應該是__________.
如圖(),若在四邊形
中,
,
,
,
分別是
,
上的點,且
,上述結論是否仍然成立,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,tan∠ABC=,∠ACB=45°,AD=8,AD是邊BC上的高,垂足為D,BE=4,點M從點B出發沿BC方向以每秒3個單位的速度運動,點N從點E出發,與點M同時同方向以每秒1個單位的速度運動.以MN為邊在BC的上方作正方形MNGH.點M到達點C時停止運動,點N也隨之停止運動.設運動時間為t(秒)(t>0).
(1)當t為多少秒時,點H剛好落在線段AB上?
(2)當t為多少秒時,點H剛好落在線段AC上?
(3)設正方形MNGH與Rt△ABC重疊部分的圖形的面積為S,求出S關于t的函數關系式并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二青會開幕式期間,出租車司機李師傅營運時是在南北走向的濱河西路上行進的,如果規定向南為正,向北為負,他這天上午所接位乘客的行車里程(單位:
)為:
,
,
,
,
,
.(假設相鄰兩位乘客上下車沒有時間間隔)
(1)試判斷李師傅將最后一位乘客送到目的地時,他在出發點的什么方向,距離出發地多少千米?
(2)若汽車耗油量為,則這天上午李師傅接送乘客時出租車共耗油多少升?
(3)若出租車起步價為元,起步里程為
(包括
),超過部分每千米
元,問李師傅這天上午共得車費多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發,設出發的時間為t秒.
(1)出發2秒后,求PQ的長.
(2)當點Q在邊BC上運動時,出發幾秒鐘后,△PQB能形成等腰三角形?
(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有4張分別標有數字2,3,4,6的撲克牌,除正面的數字外,牌的形狀、大小完全相同.小紅先從口袋中隨機摸出一張撲克牌并記下牌上的數字為x;小穎在剩下的3張撲克牌中隨機摸出一張撲克牌并記下牌上的數字為y,
(1)事件①:小紅摸出標有數字3的牌,事件②:小穎摸出標有數字1的牌,則( )
A.事件①是必然事件,事件②是不可能事件,
B.事件①是隨機事件,事件②是不可能事件,
C.事件①是必然事件,事件②是隨機事件,
D.事件①是隨機事件,事件②是必然事件,
(2)若|x-y|≤2,則說明小紅與小穎“心領神會”,請求出她們“心領神會”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在一次打籃球時,籃球傳出后的運動路線為如圖所示的拋物線,以小明所站立的位置為原點O建立平面直角坐標系,籃球出手時在O點正上方1m處的點P.已知籃球運動時的高度y(m)與水平距離x(m)之間滿足函數表達式y=-x2+x+c.
(1)求y與x之間的函數表達式;
(2)球在運動的過程中離地面的最大高度;
(3)小亮手舉過頭頂,跳起后的最大高度為BC=2.5m,若小亮要在籃球下落過程中接到球,求小亮離小明的最短距離OB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
在學習“可化為一元一次方程的分式方程及其解法”的過程中,老師提出一個問題:若關于x的分式方程=1的解為正數,求a的取值范圍.
經過獨立思考與分析后,小杰和小哲開始交流解題思路如下:
小杰說:解這個關于x的分式方程,得x=a+4.由題意可得a+4>0,所以a>﹣4,問題解決.
小哲說:你考慮的不全面,還必須保證x≠4,即a+4≠4才行.
(1)請回答: 的說法是正確的,并簡述正確的理由是 ;
(2)參考對上述問題的討論,解決下面的問題:
若關于x的方程的解為非負數,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com