日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內有一點P,AP、BP的延長線分別交半圓O于點C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當點P在半圓周上時,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當點P在半圓周外時,結論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當點P在切線BE外側時,你能得到什么結論?將你得到的結論寫出來.

解:(1)成立.
證明:如圖(2),∵∠PCM=∠PDM=90°,
∴點C、D在以PM為直徑的圓上,
∴AC•AP=AM•AD,BD•BP=BM•BC,
∴AC•AP+BD•BP=AM•MD+BM•BC;
∵AM•MD+BM•BC=AB2
∴AP•AC+BP•BD=AB2

(2)如圖(3),過P作PM⊥AB,交AB的延長線于M,連接AD、BC,則C、M在以PB為直徑的圓上;
∴AP•AC=AB•AM①,
∵D、M在以PA為直徑的圓上,
∴BP•BD=AB•BM②,
由圖象可知:AB=AM-BM③
由①②③可得:AP•AC-BP•BD=AB•(AM-BM)=AB2
分析:(1)連接BC,AD,根據圓周角定理及四邊形的對角互補得到,點C、D在以PM為直徑的圓上,由割線定理得到AC•AP=AM•AD,BD•BP=BM•BC,對其進行整理即可得到結論.
(2)過P作PM⊥AB,交AB的延長線于M,連接AD、BC,由割線定理得AP•AC=AB•AM,BP•BD=AB•BM,由圖象可知:AB=AM-BM,對三個式子進行整理即可得到所求的結論.
點評:本題利用了四點共圓的判定,割線定理,直徑對的圓周角是直角求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

24、閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內有一點P,AP、BP的延長線分別交半圓O于點C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當點P在半圓周上時,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當點P在半圓周外時,結論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當點P在切線BE外側時,你能得到什么結論?將你得到的結論寫出來.

查看答案和解析>>

科目:初中數學 來源:第3章《圓》中考題集(51):3.5 直線和圓的位置關系(解析版) 題型:解答題

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內有一點P,AP、BP的延長線分別交半圓O于點C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當點P在半圓周上時,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當點P在半圓周外時,結論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當點P在切線BE外側時,你能得到什么結論?將你得到的結論寫出來.

查看答案和解析>>

科目:初中數學 來源:第28章《圓》中考題集(57):28.2 與圓有關的位置關系(解析版) 題型:解答題

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內有一點P,AP、BP的延長線分別交半圓O于點C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當點P在半圓周上時,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當點P在半圓周外時,結論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當點P在切線BE外側時,你能得到什么結論?將你得到的結論寫出來.

查看答案和解析>>

科目:初中數學 來源:第24章《圓》中考題集(44):24.2 點、直線和圓的位置關系(解析版) 題型:解答題

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內有一點P,AP、BP的延長線分別交半圓O于點C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當點P在半圓周上時,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當點P在半圓周外時,結論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當點P在切線BE外側時,你能得到什么結論?將你得到的結論寫出來.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩视频在线观看一区 | 99精品久久久久 | 欧美一区二区三区免费 | 国产亚洲欧美一区 | 久久久久久久久久久久久九 | 91精品国产综合久久久蜜臀粉嫩 | 亚洲国产精品自拍 | 国产aⅴ| 精品国产一区二区三区久久影院 | 久久久久国产亚洲日本 | 成人精品鲁一区一区二区 | 一级黄色大片视频 | 伊人电影综合 | 亚洲成人一二三 | 欧美精品三级 | 成人黄视频在线观看 | 久久久国产一区二区三区四区小说 | av电影手机在线看 | 中文字幕在线免费 | 精品国产一区二区在线 | 久久国产麻豆 | 69久久99精品久久久久婷婷 | 日韩中字在线观看 | 亚洲欧美影院 | 美女扒开内裤让男人桶 | 夜夜久久| 久久r精品 | 性视频黄色 | 毛片aaaaa| 黄色大片视频 | 91亚洲国产精品 | www.日韩视频 | 一级毛片视频 | 欧美精品久久久久久久宅男 | 一本大道综合伊人精品热热 | 欧美3区| 国产黄色大片 | 亚洲成人免费视频在线观看 | 一区二区三区在线 | 欧美日韩免费一区二区三区 | 久久之精品 |