日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】如圖1,矩形OBCD的邊ODOB分別在x軸和y軸上,且B (08)D(100).點EDC邊上一點,將矩形OBCD沿過點O的射線OE折疊,使點D恰好落在BC邊上的點A處.

1)若拋物線yax2+bx經(jīng)過點AD,求此拋物線的解析式;

2)若點M是(2)中拋物線對稱軸上的一點,是否存在點M,使AME為等腰三角形?若存在,直接寫出點M的坐標(biāo);若不存在,說明理由;

3)如圖2,動點P從點O出發(fā)沿x軸正方向以每秒1個單位的速度向終點D運動,動點Q從點D出發(fā)沿折線DCA以同樣的速度運動,兩點同時出發(fā),當(dāng)一點運動到終點時,另一點也隨之停止,過動點P作直線1x軸,依次交射線OAOE于點FG,設(shè)運動時間為t(秒),QFG的面積為S,求St的函數(shù)關(guān)系式,并直接寫出t的取值范圍.(t的取值應(yīng)保證QFG的存在)

【答案】1;(2)存在,滿足要求的點M的坐標(biāo)為(55)(52.5),理由見解析;(3

【解析】

1)先利用矩形的性質(zhì)及折疊的性質(zhì)求出點A的坐標(biāo),然后用待定系數(shù)法即可求得拋物線的解析式;

2)易求得拋物線的對稱軸x5,過點EETAH,垂足為T,設(shè)點M的坐標(biāo)為(mn),運用勾股定理用含n的代數(shù)式表示出AM2EM2,然后分三種情況進(jìn)行討論:AMAE, EMEA, MAME分別列出等式,求出n,就可求出點M的坐標(biāo);

3)根據(jù)點Q的位置不同,分以下四種情況進(jìn)行討論:①點Q在線段DC上;②點QAC上且在直線l的右邊;③點QAC上且在直線l上;④點QAC上且在直線l的左邊,分情況討論即可.

1)解:∵四邊形OBCD是矩形,B08),D100),

BCOD10DCOB8,∠OBC=∠C90°

由折疊可得:OAOD10AEDE

∵∠OBC90°OB8OA10

AB

AC4

設(shè)AEDEx,則CE8x

∵∠C90°

x242+8x2

解得:x5

AEDE5

∴點A的坐標(biāo)為(68),點E的坐標(biāo)為(105).

∵拋物線yax2+bx經(jīng)過點A68),D100),

解得

此拋物線的解析式為

2)存在M,使AME為等腰三角形.

設(shè)拋物線的對稱軸與BC交于點H,過點EETAH,垂足為T,連接AMME,如圖1

設(shè)點M的坐標(biāo)為(mn),則

AH651HM8nET1055TM5n

AHHM

AM2AH2+MH21+8n2

ETMH

ME2ET2+MT225+5n2

①若AMAE,AM2AE2

1+8n225,

∴(8n224,

解得:

此時點M的坐標(biāo)為

②若EMEA,EM2EA2

25+5n225

∴(5n20

n35

此時點M的坐標(biāo)為

③若MAME,則MA2ME2

1+8n225+5n2

解得:n42.5

此時點M的坐標(biāo)為

綜上所述:滿足要求的點M的坐標(biāo)為,(55),(52.5);

3)設(shè)直線OA的解析式yk1x

∵點A的坐標(biāo)為(68),

6k18

∴直線OA的解析式為

同理可得:直線OE的表達(dá)式為y

OP1×tt

Pt0

∵直線lx軸于點P,點FG是直線lOAOE的交點

①當(dāng)0t8時,點Q在線段DC上,

過點QQS⊥直線l,垂足為S

QSPD10t

②當(dāng)8≤t9時,點Q在線段CA上,且在直線l的右側(cè),

設(shè)FGAC于點N,如圖3

QNCNCQPDCQ=(10-t)﹣(t8)=182t

③當(dāng)t9時,QN182t0,點Q與點N重合,此時QFG不存在,故舍去;

④當(dāng)9t≤10時,點Q在線段CA上,且在直線l的左側(cè),設(shè)FGAC于點N,如圖4

QNCQCNCQPD=(t-8-(10-t)2t18

;

綜上所述:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是( )

A. 賽跑中,兔子共休息了50分鐘

B. 烏龜在這次比賽中的平均速度是0.1米/分鐘

C. 兔子比烏龜早到達(dá)終點10分鐘

D. 烏龜追上兔子用了20分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,

1)如圖1,若將線段繞點逆時針旋轉(zhuǎn)得到線段連接的面積;

2)如圖2,點延長線上一個動點,連接為直角項點,為直角邊作等腰直角連接,求證:

3)如圖3,點為線段上兩點,且是線段上一個動點,點是線段上一個動點,是否存在點使的值最小,若存在,求出最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會為了解本校學(xué)生每天做作業(yè)所用的時間情況,采用問卷的方式對一部分學(xué)生進(jìn)行調(diào)查,在確定調(diào)查對象時,大家提出以下幾種方案:

A)對各班班長進(jìn)行調(diào)查;

B)對某班的全體學(xué)生進(jìn)行調(diào)查;

C)從全校每班隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查.

在問卷調(diào)查時,每位被調(diào)查的學(xué)生都選擇了問卷中適合自己的一個時間,學(xué)生會收集到的數(shù)據(jù)整理后繪制成如圖所示的條形統(tǒng)計圖.

1)為了使收集到的數(shù)據(jù)具有代表性,學(xué)生會在確定調(diào)查對象時選擇了方案____(填ABC);

2)被調(diào)查的學(xué)生每天做作業(yè)所用的時間的眾數(shù)為_______小時,中位數(shù)為______小時;

3)根據(jù)以上統(tǒng)計結(jié)果,估計該校800名學(xué)生中每天做作業(yè)時間用1.5小時的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD 是菱形ABCD 的對角線,A30°

(1)請用尺規(guī)作圖法,AB 的垂直平分線EF,垂足為E,AD F;(不要 求寫作法,保留作圖痕跡)

(2)(1)的條件下,連接BF,求∠DBF 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長是4,點PAD邊的中點,點E是正方形邊上的一點,若△PBE是等腰三角形,則腰長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:我們學(xué)習(xí)等邊三角形時得到直角三角形的一個性質(zhì):在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在RtABC中,∠ACB=90°,ABC=30°,則:AC=AB.

探究結(jié)論:小明同學(xué)對以上結(jié)論作了進(jìn)一步研究.

(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BECE之間的數(shù)量關(guān)系為  

(2)如圖2,點D是邊CB上任意一點,連接AD,作等邊ADE,且點E在∠ACB的內(nèi)部,連接BE.試探究線段BEDE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.

(3)當(dāng)點D為邊CB延長線上任意一點時,在(2)條件的基礎(chǔ)上,線段BEDE之間存在怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論  

拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(﹣,1),點Bx軸正半軸上的一動點,以AB為邊作等邊ABC,當(dāng)C點在第一象限內(nèi),且B(2,0)時,求C點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已經(jīng)成為更多人的自主學(xué)習(xí)選擇.某校計劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機(jī)對本校部分學(xué)生進(jìn)行了“你對哪類在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計圖;

(2)求扇形統(tǒng)計圖中“在線討論”對應(yīng)的扇形圓心角的度數(shù);

(3)該校共有學(xué)生2700人,請你估計該校對在線閱讀最感興趣的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠ABC=ADC=90°,對角線ACBD交于點ODE平分∠ADCBC于點E,連接OE

1)求證:四邊形ABCD是矩形;

2)若AB=4,求△OEC的面積.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 久久久久久久免费视频 | 国产精品aaa | 51成人做爰www免费看网站 | 四虎四虎 | 日韩视频在线观看免费 | 国产成人aⅴ | 精品国产91乱码一区二区三区 | 福利av在线 | 欧美在线综合 | 99re久久 | 久久天天操 | 欧美一级片免费观看 | 欧美黄色片 | 免费不卡视频 | 国产福利在线观看 | 欧美91视频| 成人在线观看免费爱爱 | 日韩欧美在线视频 | av网站观看 | 天天做天天操 | 欧美做爰xxxⅹ性欧美大片 | 做爰xxxⅹ性生交 | 黄色成人在线 | 欧美日韩在线一区二区 | 成人黄色一级片 | 三上悠亚一区二区 | 一本一道久久a久久精品蜜桃 | 国产精品二区一区二区aⅴ污介绍 | 美女黄色小说 | 成年人毛片 | 国产一级在线视频 | 加勒比综合| 亚洲激情欧美 | 亚洲精品二区 | 日韩高清一区 | 日韩欧美国产一区二区三区 | 久久久精品一区 | 黄色在线小视频 | 亚洲精品久久久久avwww潮水 | 日韩中文字幕在线观看 | 色视频www在线播放国产人成 |