日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CD方向向點(diǎn)D運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)以相同速度從點(diǎn)D出發(fā)沿DA方向向終點(diǎn)A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求AD的長;
(2)設(shè)CP=x,問當(dāng)x為何值時(shí)△PDQ的面積達(dá)到最大,并求出最大值;
(3)探究:在BC邊上是否存在點(diǎn)M使得四邊形PDQM是菱形?若存在,請(qǐng)找出點(diǎn)M,并求出BM的長;不存在,請(qǐng)說明理由.

【答案】分析:(1)可通過構(gòu)建直角三角形來求解:過A作AE⊥CD,垂足為E.那么可在直角三角形AED中根據(jù)兩底的差和∠D的度數(shù)來求出AD的長.
(也可通過作輔助線將梯形分成平行四邊形和等邊三角形兩部分來求解.)
(2)可通過求△PDQ的面積與x的函數(shù)關(guān)系式來得出△PDQ的最大值.由于P、Q速度相同,因此CP=QD=x,那么可用x表示出PD,而△PQD中,PD邊上的高=QD•sin60°,由此可根據(jù)三角形的面積公式求出S△PQD與x之間的函數(shù)關(guān)系式,可根據(jù)函數(shù)的性質(zhì)求出S的最大值以及對(duì)應(yīng)的x的值.
(3)假設(shè)存在這樣的M點(diǎn),那么DM就是PQ的垂直平分線,可得出QD=PD、PM=AM,然后證PM=PD即可.根據(jù)(2)中得出PD、DQ的表達(dá)式,可求出x=,即P是CD的中點(diǎn),不難得出△QPD為等邊三角形,因此∠QPD=∠C=60°,因此PQ∥CM,即∠DMC=90°,在直角三角形DMC中,P為斜邊CD的中點(diǎn),因此PM=PD,即可得出四邊形PDQM是菱形.那么此時(shí)根據(jù)BM=BC-CM可求出BM的長.
解答:解:(1)解法一:如圖1
過A作AE⊥CD,垂足為E.
依題意,DE==
在Rt△ADE中,AD==

解法二:如圖2
過點(diǎn)A作AE∥BC交CD于點(diǎn)E,則CE=AB=4.
∠AED=∠C=60度.
又∵∠D=∠C=60°,
∴△AED是等邊三角形.
∴AD=DE=9-4=5.

(2)如圖1
∵CP=x,h為PD邊上的高,依題意,
△PDQ的面積S可表示為:
S=PD•h=(9-x)•x•sin60°
=(9x-x2)=-(x-2+
由題意知0≤x≤5.
當(dāng)x=時(shí)(滿足0≤x≤5),S最大值=

(3)如圖4
存在滿足條件的點(diǎn)M,則PD必須等于DQ.
于是9-x=x,x=
此時(shí),點(diǎn)P、Q的位置如圖4所示,△PDQ恰為等邊三角形.
過點(diǎn)D作DO⊥PQ于點(diǎn)O,延長DO交BC于點(diǎn)M,連接PM、QM,則DM垂直平分PQ,
∴MP=MQ.
易知∠1=∠C.
∴PQ∥BC.
又∵DO⊥PQ,
∴MC⊥MD
∴MP=CD=PD
即MP=PD=DQ=QM
∴四邊形PDQM是菱形
所以存在滿足條件的點(diǎn)M,且BM=BC-MC=5-=
點(diǎn)評(píng):本題是一道壓軸題,也是一道開放探索題,第(2)問是條件開放,第(3)問是結(jié)論開放.本題既考查了學(xué)生的分析作圖能力,又考查學(xué)生綜合運(yùn)用平行線、等腰梯形、等邊三角形、菱形、二次函數(shù)等知識(shí).這里設(shè)計(jì)了一個(gè)開放的、動(dòng)態(tài)的數(shù)學(xué)情境,為學(xué)生靈活運(yùn)用基礎(chǔ)知識(shí)、分析問題、解決問題留下了廣闊的探索、創(chuàng)新的思維空間.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周長為40cm,則CD的長為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)求證:AB=AD;
(2)若AD=2,∠C=60°,求等腰梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•昌平區(qū)二模)已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
3

(1)求證:AB=AD;
(2)求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,對(duì)角線BD平分∠ABC,且BD⊥DC,上底AD=3cm.
(1)求∠ABC的度數(shù); 
(2)求梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC,延長BC到E,使CE=AD.
(1)求證:BD=DE;
(2)當(dāng)DC=2時(shí),求梯形面積.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 日韩成人av在线 | 色综合一区 | 日日摸日日碰夜夜爽亚洲精品蜜乳 | 欧美成人一区二区三区片免费 | 一级毛片免费播放 | 国精产品一区一区三区在线观看 | 精品国产天堂 | 999久久久免费精品国产 | 国产成人精品久久 | 成人三级黄色片 | 国产精品亚洲精品日韩已方 | 一二三区不卡视频 | 国产免费网址 | 欧美精品h | 久久国产精品免费视频 | 国产精品免费观看 | 国产成人在线网站 | a在线免费| 久久伦理中文字幕 | 综合视频一区二区三区 | 欧美成人激情视频 | 一区二区三区四区精品 | 国产成人精品一区二区三区四区 | 久久99国产精一区二区三区 | 欧美高清一区 | 色九九 | 欧美激情a∨在线视频播放 欧美一级艳片视频免费观看 | 成人一级| 日本a免费 | 美女张开腿视频网站免费 | 一区二区三区国产亚洲网站 | 一区二区中文字幕在线观看 | 久久久久久亚洲 | av在线一区二区三区 | 国产小视频在线观看 | 国产成a人亚洲精 | 一级片手机免费看 | 久草在线观看福利视频 | 日韩欧美一区二区三区免费观看 | av黄色在线观看 | www.成人|