【題目】在平面直角坐標系中,已知拋物線:
和直線
:
,點
和
均在直線
上.
(1)求直線的解析式;
(2)若拋物線過點,且拋物線與線段
有兩個不同的交點,求
的取值范圍;
(3)將直線下移2個單位得到直線
,直線
與拋物線
:
交于
、
兩點,若點
的橫坐標為
,點
的橫坐標為
,當
,
時,求
的取值范圍.
【答案】(1)y=2x+2;(2)-<a≤-2或a≥4;(3)
或
【解析】
(1)利用待定系數法將點A和點B坐標代入直線表達式求解即可;
(2)將點E坐標代入,求出拋物線表達式,將一次直線解析式和二次函數解析式聯立方程,求出使得這個方程有兩個不同的實數根時a的取值范圍,然后再根據拋物線y=ax2-x+1(a≠0)與線段AB有兩個不同的交點,利用分類討論的方法即可求得a的取值范圍,本題得以解決;
(3)根據題意得出l1的表達式,聯立拋物線和直線表達式,得,根據
求出2a+1=
,再分0<x1<2,-2<x1<0兩種情況,分別解不等式求出b的取值范圍即可.
解:(1)∵點和
均在直線
上,代入得
,
解得:,
∴直線l的解析式為:y=2x+2;
(2)∵拋物線過點,代入拋物線表達式,
得:a+b+1=a,解得b=-1,
∴拋物線表達式為y=ax2-x+1,
∵拋物線與線段AB有兩個不同的交點,
令2x+2=ax2-x+1,
則ax2-3x-1=0,
若直線y=2x+2與拋物線y=ax2-x+1(a≠0)有兩個不同的交點,
則△=(-3)2-4a×(-1)>0,
解得,a>-,
∵拋物線y=ax2-x+1(a≠0)與線段AB有兩個不同的交點,點A(,1)和B(1,4),
∴當-<a<0時,
,
解得,-<a≤-2,
當a>0時,,
解得,a≥4;
由上可得,a的取值范圍是-<a≤-2或a≥4;
(3)由平移可知直線l1的表達式為:y=2x,
聯立直線和拋物線得:,化簡得:
,
可知x1x2=,x1x2同號,
若0<x1<2,則x2- x1=2,
∴x2=x1+2>2,4a+2b-3<0,①
又∵=
=
=4,
∴2a+1=,代入①得:
②,
解得:;
若-2<x1<0,則x2=-2+x1<-2,
∴4a-2b+5<0,③
將2a+1=代入③,得
<2b-3,④
解得:;
綜上:或
.
科目:初中數學 來源: 題型:
【題目】某學校八、九兩個年級各有學生180人,為了解這兩個年級學生的體質健康情況,進行了抽樣調查,具體過程如下:
收集數據
從八、九兩個年級各隨機抽取20名學生進行體質健康測試,測試成績(百分制)如下:
八年級 | 78 | 86 | 74 | 81 | 75 | 76 | 87 | 70 | 75 | 90 |
75 | 79 | 81 | 70 | 74 | 80 | 86 | 69 | 83 | 77 | |
九年級 | 93 | 73 | 88 | 81 | 72 | 81 | 94 | 83 | 77 | 83 |
80 | 81 | 70 | 81 | 73 | 78 | 82 | 80 | 70 | 40 |
整理、描述數據
將成績按如下分段整理、描述這兩組樣本數據:
成績(x) | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
八年級人數 | 0 | 0 | 1 | 11 | 7 | 1 |
九年級人數 | 1 | 0 | 0 | 7 | 10 | 2 |
(說明:成績80分及以上為體質健康優秀,70~79分為體質健康良好,60~69分為體質健康合格,60分以下為體質健康不合格)
分析數據
兩組樣本數據的平均數、中位數、眾數、方差如表所示:
年級 | 平均數 | 中位數 | 眾數 | 方差 |
八年級 | 78.3 | 77.5 | 75 | 33.6 |
九年級 | 78 | 80.5 | a | 52.1 |
(1)表格中a的值為______;
(2)請你估計該校九年級體質健康優秀的學生人數為多少?
(3)根據以上信息,你認為哪個年級學生的體質健康情況更好一些?請說明理由.(請從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣x2+bx+c與x軸交于點A,B,與y軸交于點C,直線y=x+4經過A,C兩點.
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動點P.
①如圖1,當點P運動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點P的坐標;
②如圖2,過點O,P的直線y=kx交AC于點E,若PE:OE=3:8,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中雅培粹學校舉辦運動會,全校有3000名同學報名參加校運會,為了解各類運動賽事的分布情況,從中抽取了部分同學進行統計:A.田徑類,B.球類,C.團體類,D.其他,并將統計結果繪制成如圖所示的兩幅不完整的統計圖.
(1)這次統計共抽取了 位同學,扇形統計圖中的 ,
的度數是 ;
(2)請將條形統計圖補充完整;
(3)估計全校共多少學生參加了球類運動.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學小組在郊外的水平空地上對無人機進行測高實驗.如圖,兩臺測角儀分別放在A、B位置,且離地面高均為1米(即米),兩臺測角儀相距50米(即AB=50米).在某一時刻無人機位于點C (點C與點A、B在同一平面內),A處測得其仰角為
,B處測得其仰角為
.(參考數據:
,
,
,
,
)
(1)求該時刻無人機的離地高度;(單位:米,結果保留整數)
(2)無人機沿水平方向向左飛行2秒后到達點F(點F與點A、B、C在同一平面內),此時于A處測得無人機的仰角為,求無人機水平飛行的平均速度.(單位:米/秒,結果保留整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與
軸交于點
,拋物線
與
軸的一個交點為
(點
在點
的左側),過點
作
垂直
軸交直線
于點
.
(1)求拋物線的函數表達式;
(2)將繞點
順時針旋轉
,點
的對應點分別為點
①求點的坐標;
②將拋物線向右平移使它經過點
,此時得到的拋物線記為
,求出拋物線
的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1.在Rt△ABC中,∠C=90°,AC=BC,AP、BP分別平分∠CAB、∠CBA,過點P作DE∥AB交AC于點D,交BC于點E.求證:①點P是線段DE的中點;②求證:BP2=BE·BA;
(2)如圖2.在Rt△ABC中,∠C=90°,AB=13,BC=12,BP平分∠ABC,過點P作DE∥AB交AC于點D,交BC于點E,若點P為線段DE的中點,求AD的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com