【題目】拋物線y=﹣x2+bx+c上部分點的橫坐標x,縱坐標y的對應值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,有下列說法:
①拋物線與y軸的交點為(0,6);
②拋物線的對稱軸是x=1;
③拋物線與x軸有兩個交點,它們之間的距離是 ;
④在對稱軸左側y隨x增大而增大.
其中正確的說法是( )
A.①②③
B.②③④
C.②③
D.①④
【答案】D
【解析】解:∵拋物線過點(﹣2,0)和(0,6),則 ,解得
,
∴拋物線的解析式為y=﹣x2+x+6,
∴拋物線與y軸的交點為(0,6),故①正確;
拋物線的對稱是:直線x=﹣ =
,故②錯誤;
拋物線與x軸的兩個交點為(﹣2,0),(3,0),它們之間的距離是5,故③錯誤;
拋物線開口向下,則在對稱軸左側,y隨x的增大而增大,故④正確.
正確答案為①④.
故選:D.
【考點精析】解答此題的關鍵在于理解二次函數的性質的相關知識,掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.
(4)連接AC,H是拋物線上一動點,過點H作AC的平行線交x軸于點F.是否存在這樣的點F,使得以A,C,H,F為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數y= 的圖象上.若點B在反比例函數y=
的圖象上,則k的值為( )
A.﹣4
B.4
C.﹣2
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】八年級(3)班共有學生54人,學習委員調查了班級學生參加課外活動的情況(每人只參加一項活動),其中:參加讀書活動的18人,參加科技活動的人數占全班總人數的,參加藝術活動的比參加科技活動的多3人,所調查班級同學參加體育活動情況如圖所示,則在扇形圖中表示參加體育活動人數的扇形的圓心角大小為( )
A. 100° B. 110°
C. 120° D. 130°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解本校九年級學生期末數學考試情況,小亮在九年級隨機抽取了一部分學生的期末數學成績為樣本,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個等級進行統計,并將統計結果繪制成如下統計圖,請你根據統計圖解答以下問題:
(1)這次隨機抽取的學生共有多少人?
(2)請補全條形統計圖;
(3)這個學校九年級共有學生1200人,若分數為80分(含80分)以上為優秀,請估計這次九年級學生期末數學考試成績為優秀的學生人數大約有多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分別是BC、CD上的點.且∠EAF=60°.探究圖中線段BE、EF、FD之間的數量關系.
小王同學探究此問題的方法是,延長FD到點G,使DG=BE.連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論應是 ;
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點,且∠EAF=∠BAD,上述結論是否仍然成立,并說明理由;
實際應用:
如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=3,點D在邊AC上,且AD=2CD,DE⊥AB,垂足為點E,聯結CE,求:
(1)線段BE的長;
(2)∠ECB的余切值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com