【題目】如圖,拋物線交
軸于點
、
(
在
的左側),交
軸于點
,且
,
.
(1)求拋物線的解析式;
(2)點為第四象限拋物線上一點,過點
作
軸的平行線交
于點
,設
點橫坐標為
,線段
的長度為
,求
與
的函數關系式.(不要求寫出
的取值范圍)
(3)在(2)的條件下,為
延長線上一點,且
,連接
、
、
,
的面積為
,求
的面積.
【答案】(1);(2)
;(3)
【解析】
(1)對于,令
,得
,從而點
,由
得到點
將
、
代入
,由待定系數法即可拋物線的解析式為
;
(2)設由
,
可得直線
的解析式為
,由
軸,故
,由此可得
,從而
;
(3)過點作
的垂線交
軸于點
,過點
作
的垂線交
于點
,過點
做
,延長
交
軸于點
,連接
交
于點
,過點
作
.由已知可得
、
均為等腰直角三角形,從而
,
,由等式的性質可得
,進而
,由可得全等三角形的性質
,
,所以
,
,所以
.由相似三角形的性質可得
,由三角形的面積可求得OM的值,在
中,由正切的定義可求得t的值,由
即可得解.
(1)∵對于,
令,則
,
∴,
,
∴,
將、
代入
,
∴,解得,
∴拋物線的解析式為;
(2)∵在拋物線
上,設
,
∵,
,
∴直線的解析式為
,
∵軸,
∴點的橫坐標與
點橫坐標相同,
∴,
∴,
∴;
(3)過點作
的垂線交
軸于點
,過點
作
的垂線交
于點
,過點
做
,延長
交
軸于點
,連接
交
于點
,過點
作
.
∵,
,
∴、
均為等腰直角三角形,
∴,
,
,
∴,
∴,
∴,
,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∴,
∴在中,
,
∴,
∴,
∴,
∴
科目:初中數學 來源: 題型:
【題目】平面內有一等腰直角三角板(∠ACB=90°)和一直線MN,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.當點E與點A重合時(如圖①),易證:AF+BF=2CE;當三角板繞點A順時針旋轉至圖②、圖③的位置時,上述結論是否仍然成立?若成立,請給予證明;若不成立,線段AF、BF、CE之間又有怎樣的數量關系,請直接寫出你的猜想,請直接寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,第一顆彈珠彈出后其速度(米/分鐘)與時間
(分鐘)前2分鐘滿足二次函數
,后3分鐘滿足反比例函數關系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分鐘.
(1)求第一顆彈珠的速度(米/分鐘)與時間
(分鐘)之間的函數關系式;
(2)第一顆彈珠彈出1分鐘后,彈出第二顆彈珠,第二顆彈珠的運行情況與第一顆相同,直接寫出第二顆彈珠的速度(米/分鐘)與彈出第一顆彈珠后的時間
(分鐘)之間的函數關系式;
(3)當兩顆彈珠同時在軌道上時,第____分鐘末兩顆彈珠的速度相差最大,最大相差______;
(4)判斷當兩顆彈珠同時在軌道上時,是否存在某時刻速度相同?請說明理由,并指出可以通過解哪個方程求出這一時刻.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC 的頂點分別為 A(-2,2)、B(-4,5)、C(-5,1)和直線 m (直線 m 上各點的橫坐標都為 1).
(1)作出△ABC 關于 軸對稱的圖形△A1B1C1,并寫出點 A1 的坐標;
(2)作出點 C關于直線 m 對稱的點C2 , 并寫出點C2 的坐標;
(3)在軸上找一點P,使 PA+PC的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列每個圖形都是由一些黑點和一些白點按一定的規律組成的.
(1)根據規律,第4個圖中有 個白點;第個圖形中,白點和黑點總數的和為 (用
表示,
為正整數);
(2)有沒有可能黑點比白點少2020個,如果有,求出此時的值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在矩形AEFD中,點C為EF上一點,點B為FE的延長線上一點,連接CD、AB,.
(1)如圖1,求證:;
(2)如圖2,連接BD、AC交于點,若
,在不添加任何輔助線的情況下,請直接寫出圖2中四個直角三角形,使寫出的每個三角形的面積等于四邊形
的
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,函數y=-x2+x+c(-2020≤x≤1)的圖象記為L1,最大值為M1;函數y=-x2+2cx+1(1≤x≤2020)的圖象記為L2,最大值為M2.L1的右端點為A,L2的左端點為B,L1,L2合起來的圖形記為L.
(1)當c=1時,求M1,M2的值;
(2)若把橫、縱坐標都是整數的點稱為“美點”,當點A,B重合時,求L上“美點”的個數;
(3)若M1,M2的差為,直接寫出c的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛慢車和一輛快車沿相同路線從A地到B地,所行駛的路程與時間的函數圖象如圖所示,下列說法正確的有( )
①快車追上慢車需6小時;
②慢車比快車早出發2小時;
③快車速度為46km/h;
④慢車速度為46km/h;
⑤AB兩地相距828km;
A.2個B.3個C.4個D.5個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com