日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
附加題:由直角三角形邊角關系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

【答案】分析:將等式的兩邊同時除以AC和BC,然后利用三角函數代入,整理即可.
解答:解:由題消去AC、BC、CD,
得到sin(α+β)=sinα•cosβ+cosα•sinβ,
給AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,
兩邊同除以AC•BC得,
sin(α+β)=•sinα+•sinβ,
=cosβ,=cosα,
∴sin(α+β)=sinα•cosβ+cosα•sinβ.
點評:本題為討論型問題,求解過程中運用了三角函數公式,對邏輯推理能力和運算能力進行考查.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

附加題:由直角三角形邊角關系,可將三角形面積公式變形,得S△ABC=
1
2
bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得
1
2
AC•BC•sin(α+β)=
1
2
AC•CD•sinα+
1
2
BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②精英家教網
你能利用直角三角形邊角關系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

查看答案和解析>>

科目:初中數學 來源:第1章《直角三角形的邊角關系》常考題集(11):1.4 船有觸角的危險嗎(解析版) 題型:解答題

附加題:由直角三角形邊角關系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

查看答案和解析>>

科目:初中數學 來源:第1章《直角三角形的邊角關系》中考題集(23):1.4 船有觸角的危險嗎(解析版) 題型:解答題

附加題:由直角三角形邊角關系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

查看答案和解析>>

科目:初中數學 來源:第1章《解直角三角形》常考題集(10):1.4 解直角三角形(解析版) 題型:解答題

附加題:由直角三角形邊角關系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

查看答案和解析>>

科目:初中數學 來源:第31章《銳角三角函數》常考題集(14):31.3 銳角三角函數的應用(解析版) 題型:解答題

附加題:由直角三角形邊角關系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品一区三区 | 国产一区二区三区久久久久久久久 | 国产综合一区二区 | 日韩视频一区二区三区 | 成年人在线观看 | 91精品国产色综合久久不卡蜜臀 | 性xxxxxxxxx18欧美| 国产综合久久 | 亚洲一区免费视频 | 精品国产一区一区二区三亚瑟 | www久久久 | 精久视频 | 冷水浴在线观看 | 欧美精品一区二区三区一线天视频 | 国产福利精品在线 | 97久久久国产精品 | 和尚风流一级艳片 | 亚洲一级片 | 成人黄色免费观看 | 黄色av网站免费看 | 欧美久久精品 | 精品一区二区三区国产 | 亚洲欧美中文日韩v在线观看 | 中文字幕一区二区三区乱码在线 | 亚洲男人天堂2024 | 国产噜噜噜噜噜久久久久久久久 | 一区二区免费看 | 国产欧美一区二区精品性色 | 久久久久久久久久一本门道91 | 天天草天天草 | 高清精品自拍亚洲 | 日韩久久久久久久久久 | av官网在线 | 巨大荫蒂视频欧美大片 | 国产aⅴ爽av久久久久 | 欧美视频在线一区 | 午夜精品一区 | 97精品| 久久精品播放 | 91精品国产91久久综合桃花 | 日韩亚洲欧美一区二区 |