日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
a
a2-1
(ax-a-x)
,其中a>0且a≠1.
(1)分別判斷f(x)在(-∞,+∞)上的單調性;
(2)比較f(1)-1與f(2)-2、f(2)-2與f(3)-3的大小,由此歸納出一個更一般的結論,并證明;
(3)比較
f(1)
1
f(2)
2
f(2)
2
f(3)
3
的大小,由此歸納出一個更一般的結論,并證明.
分析:(1)先求導,再判導數的符號.
(2)直接計算f(1)-1與f(2)-2、f(2)-2與f(3)-3,進行比較.比較大小可用做差比較法.
歸納一般的結論,構造函數利用單調性進行證明.
(3)利用基本不等式和做差比較法比較大小,歸納結論,構造函數進行證明.
解答:解:(1)f/(x)=
a
a2-1
(ax+a-x)lna

若0<a<1,則
a
a2-1
<0
,lna<0,所以f/(x)>0;
若a>1,則
a
a2-1
>0
,lna>0,所以f/(x)>0,
因此,任意a>0且a≠1,都有f/(x)>0,f(x)在(-∞,+∞)上的單調遞增.
(2)直接計算知f(1)-1=0,f(2)-2=a+a-1-2,f(3)-3=a2+a-2-2,
根據基本不等式a+a-1-2>0,所以f(2)-2>f(1)-1,
又因為(a2+a-2-2)-(a+a-1-2)=[(a+a-1)2-(
a
-
a-1
)2]=(
a
-
a-1
)2(a+a-1+1)
=
1
a
(a-1)2(a+a-1+1)>0

所以f(3)-3>f(2)-2.
假設?x>0,f(x+1)-(x+1)>f(x)-x.
記g(x)=[f(x+1)-(x+1)]-[f(x)-x]
a
a2-1
[(ax+1-a-x-1)-(ax-a-x)]-1=
ax+1+a-x
a+1
-1
g/(x)=
ax+1-a-x
a+1
lna
.與(1)類似地討論知,對?x>0和?a>0且a≠1都有g/(x)>0,g(x)在[0,+∞)上的單調遞增,g(0)=0,
所以g(x)>g(0)=0,即?x>0,f(x+1)-(x+1)>f(x)-x.
(3)
f(1)
1
=1
f(2)
2
=
1
2
(a+a-1)
f(3)
3
=
a2+1+a-2
3

根據基本不等式
f(2)
2
=
1
2
(a+a-1)>1=
f(1)
1
f(3)
3
-
f(2)
2
f(3)
3
-[
f(2)
2
]2=
(a-a-1)2
12
>0

所以
f(3)
3
f(2)
2
f(1)
1

假設?x>0,
f(x+1)
x+1
f(x)
x

g(x)=
f(x)
x
,x>0,g/(x)=
xf/(x)-f(x)
x2
a
x2
×
x(ax+a-x)lna-(ax-a-x)
a2-1

h(x)=
x(ax+a-x)lna-(ax-a-x)
a2-1

則h(0)=0且h/(x)=
x(ax-a-x)ln2a
a2-1

類似(1)的討論知h/(x)=
x(ax-a-x)ln2a
a2-1
>0

從而h(x)>h(0)=0,g/(x)>0,g(x)在R+上單調增加,
所以?x>0,
f(x+1)
x+1
f(x)
x
點評:本題考查比較大小、歸納推理、函數單調性的證明及應用,綜合性強,難度較大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=a-
12x+1

(1)求證:不論a為何實數f(x)總是為增函數;
(2)確定a的值,使f(x)為奇函數;
(3)當f(x)為奇函數時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經過點Q(8,6).
(1)求a的值,并在直線坐標系中畫出函數f(x)的大致圖象;
(2)求函數f(t)-9的零點;
(3)設q(t)=f(t+1)-f(t)(t∈R),求函數q(t)的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-
1
2x+1
,若f(x)為奇函數,則a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
a(x-1)x2
,其中a>0.
(I)求函數f(x)的單調區間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實數a的值;
(III)設g(x)=xlnx-x2f(x),求g(x)在區間[1,e]上的最小值.(其中e為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數,求a的值;
(3)考察f(x)在定義域上單調性的情況,并證明你的結論.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品久久久久久久久久久久久 | 91精品国产一区二区 | 国产精品久久久久久久久久久久久 | 91亚洲精品乱码久久久久久蜜桃 | 在线日韩电影 | 亚洲国产91 | 成人国产精品久久久 | 国产精品午夜电影 | 蜜桃精品视频在线 | 中文字幕久久精品 | 精品久久久一区二区 | 欧洲毛片| 成人免费视频网站在线看 | 91色在线| 日韩美在线观看 | 一级黄色大片在线 | 色呦呦日韩 | 在线a级毛片 | 国产精品久久久久久久久 | 91啦| 在线观看免费视频亚洲 | 日本久久久久久久久久 | 免费黄色网址在线播放 | 欧美日b | 丁香在线 | 国产精品视频久久久久久 | 日韩aaa| www国产免费 | 久久性| 91久久精品一区 | 日韩欧美一区二区视频 | 国产激情 | 日韩精品一级 | 精品欧美一区二区在线观看 | 银杏成人影院在线观看 | 91久久精品 | 狠狠色综合网站久久久久久久 | 欧美在线观看一区 | 久久久久久久国产 | 91爱啪啪| 欧美日一区二区 |