【題目】如圖,直線l與⊙O相切于點A,作半徑OB并延長至點C,使得BC=OB,作CD⊥直線l于點D,連接BD得∠CBD=75°,則∠OCD=_____度.
【答案】70.
【解析】
過點B作BE⊥AD于點D,連接AB,利用BC=OB、CD⊥AD及AD為⊙O切線可證得△BAD為等腰三角形,此時可利用∠BAD=∠BDA找到∠C與∠O的關系,從而可以求出∠C的度數(shù).
解:過點B作BE⊥AD于點D,連接AB,
∵直線l與⊙O相切于點A,
∴OA⊥AD,
∵CD⊥AD,
∴OA∥BE∥CD,
∴∠O+∠C=180°,
∵OB=BC,
∴AE=ED,
∴BA=BD,
∴∠BAE=∠BDE,
∵直線l與⊙O相切于點A,
∴∠O=2∠BAE,
∴∠O=2∠BDE,
∵∠CBD=75°,CD⊥AD,
∴∠BDC=105°﹣∠C,∠BDE=90°﹣(105°﹣∠C)=∠C﹣15°,
∴∠O=2(∠C﹣15°)=2∠C﹣30°,
∴2∠C﹣30°+∠C=180°,解得∠C=70°.
故答案為:70.
科目:初中數(shù)學 來源: 題型:
【題目】一張面積為100cm2的正方形紙片,其正投影的面積可能是100cm2嗎?可能是80cm2嗎?可能是120cm2嗎?試確定這張正方形紙片的正投影面積的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是位于陜西省西安市薦福寺內的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點,被列入《世界遺產名錄》.小銘、小希等幾位同學想利用一些測量工具和所學的幾何知識測量小雁塔的高度,由于觀測點與小雁塔底部間的距離不易測量,因此經過研究需要進行兩次測量,于是在陽光下,他們首先利用影長進行測量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測得此時木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點F,使得A、C、F三點在同一直線上,并測得DF=2.5米.已知圖中所有點均在同一平面內,木棒高CD=1.72米,AB⊥BF,CD⊥BF,試根據(jù)以上測量數(shù)據(jù),求小雁塔的高度AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)
的圖象交于
,
兩點.
Ⅰ
試確定上述反比例函數(shù)和一次函數(shù)的表達式;
Ⅱ
連OB,在x軸上取點C,使
,并求
的面積;
Ⅲ
直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E在△ABC的邊AB上,∠C=90°,以AE為直徑的⊙O切BC于點D.
(1)求證:AD平分∠BAC;
(2)已知∠B=30°,AD=2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑CD垂直于弦AB,垂足為E,F(xiàn)為DC延長線上一點,且∠CBF=∠CDB.
(1)求證:FB為⊙O的切線;
(2)若AB=8,CE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店出售一種水果,經過市場估算,若每個售價為20元時,每周可賣出300個.經過市場調查,如果每個水果每降價1元,每周可多賣出25個,若設每個水果的售價為x元(x<20).
(1)則這一周可賣出這種水果為________個(用含x的代數(shù)式表示);
(2)若該周銷售這種水果的收入為6400元,那么每個水果的售價應為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.
(Ⅰ)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;
(Ⅱ)如圖②,若∠CAB=60°,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的邊分別與兩坐標軸平行,對角線AC經過坐標原點,點D在反比例函數(shù) (x>0)的圖象上.若點B的坐標為(﹣4,﹣4),則k的值為( 。
A. 2 B. 6 C. 2或3 D. ﹣1或6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com