閱讀材料:如圖,△ABC的周長為l,內切圓O的半徑為r,連結OA、OB、OC,△ABC被劃分為三個小三角形,用S△ABC表示△ABC的面積
∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=AB·r,S△OBC=
BC·r,S△OCA=
CA·r
∴S△ABC=AB·r+
BC·r+
CA·r=
l·r(可作為三角形內切圓半徑公式)
(1)理解與應用:利用公式計算邊長分為5、12、13的三角形內切圓半徑;
(2)類比與推理:若四邊形ABCD存在內切圓(與各邊都相切的圓,如圖)且面積為S,各邊長分別為a、b、c、d,試推導四邊形的內切圓半徑公式;
(3)拓展與延伸:若一個n邊形(n為不小于3的整數)存在內切圓,且面積為S,各邊長分別為a1、a2、a3、…an,合理猜想其內切圓半徑公式(不需說明理由).
科目:初中數學 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數學 來源: 題型:閱讀理解
1 | 2 |
查看答案和解析>>
科目:初中數學 來源: 題型:閱讀理解
x1+x2 |
2 |
y1+y2 |
2 |
x1+x2 |
2 |
y1+y2 |
2 |
|
|
(x2-x1)2+(y2-y1)2 |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:閱讀理解
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com