【題目】如圖,D是△ABC外接圓上的動點,且B,D位于AC的兩側,DE⊥AB,垂足為E,DE的延長線交此圓于點F.BG⊥AD,垂足為G,BG交DE于點H,DC,FB的延長線交于點P,且PC=PB.
(1)求證:BG∥CD;
(2)設△ABC外接圓的圓心為O,若AB=DH,∠OHD=80°,求∠BDE的大小.
【答案】(1)證明見解析;(2)20°或40°.
【解析】
(1)根據等邊對等角得:∠PCB=∠PBC,由四點共圓的性質得:∠BAD+∠BCD=180°,從而得:∠BFD=∠PCB=∠PBC,根據平行線的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直徑,從而得:∠ADC=∠AGB=90°,根據同位角相等可得結論;
(2)先證明四邊形BCDH是平行四邊形,得BC=DH,根據特殊的三角函數值得:∠ACB=60°,∠BAC=30°,所以DH=AC,分兩種情況:
①當點O在DE的左側時,如圖2,作輔助線,構建直角三角形,由同弧所對的圓周角相等和互余的性質得:∠AMD=∠ABD,則∠ADM=∠BDE,并由DH=OD,可得結論;
②當點O在DE的右側時,如圖3,同理作輔助線,同理有∠ADE=∠BDN=20°,∠ODH=20°,得結論.
(1)證明:如圖1,
∵PC=PB,
∴∠PCB=∠PBC,
∵四邊形ABCD內接于圓,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB,
∵∠BAD=∠BFD,
∴∠BFD=∠PCB=∠PBC,
∴BC∥DF,
∵DE⊥AB,
∴∠DEB=90°,
∴∠ABC=90°,
∴AC是⊙O的直徑,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥CD;
(2)由(1)得:BC∥DF,BG∥CD,
∴四邊形BCDH是平行四邊形,
∴BC=DH,
在Rt△ABC中,∵AB=DH,
∴tan∠ACB=,
∴∠ACB=60°,∠BAC=30°,
∴∠ADB=60°,BC=AC,
∴DH=AC,
①當點O在DE的左側時,如圖2,作直徑DM,連接AM、OH,則∠DAM=90°,
∴∠AMD+∠ADM=90°
∵DE⊥AB,
∴∠BED=90°,
∴∠BDE+∠ABD=90°,
∵∠AMD=∠ABD,
∴∠ADM=∠BDE,
∵DH=AC,
∴DH=OD,
∴∠DOH=∠OHD=80°,
∴∠ODH=20°
∵∠AOB=60°,
∴∠ADM+∠BDE=40°,
∴∠BDE=∠ADM=20°,
②當點O在DE的右側時,如圖3,作直徑DN,連接BN,
由①得:∠ADE=∠BDN=20°,∠ODH=20°,
∴∠BDE=∠BDN+∠ODH=40°,
綜上所述,∠BDE的度數為20°或40°.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F,則DE的長是( )
A. B.
C. 1 D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點的位置如圖所示.
(1)若△ABC內有一點P(a,b)隨著△ABC平移后到了點P′(a+4,b﹣1),直接寫出A點平移后對應點A′的坐標.
(2)直接作出△ABC關于y軸對稱的△A′B′C′(其中A′、B′、C′分別是A、B、C的對應點)
(3)求四邊形ABC′C的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在中,
.動點
從
的頂點
出發,以
的速度沿
勻速運動回到點
.圖2是點
運動過程中,線段
的長度
隨時間
變化的圖象.其中點
為曲線部分的最低點.
請從下面A、B兩題中任選一作答,我選擇________題.
A.的面積是______,B.圖2中
的值是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,平面直角坐標系中,直線與
軸、
軸分別交于點
,
,直線
經過點
,并與
軸交于點
.
(1)求,
兩點的坐標及
的值;
(2)如圖2,動點從原點
出發,以每秒
個單位長度的速度沿
軸正方向運動.過點
作
軸的垂線,分別交直線
,
于點
,
.設點
運動的時間為
.
①點的坐標為______.點
的坐標為_______;(均用含
的式子表示)
②請從下面A、B兩題中任選一題作答我選擇________題.
A.當點在線段
上時,探究是否存在某一時刻,使
?若存在,求出此時
的面積;若不存在說明理由.
B.點是線段
上一點.當點
在射線
上時,探究是否存在某一時刻使
?若存在、求出此時
的值,并直接寫出此時
為等腰三角形時點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把正方形鐵片OABC置于平面直角坐標系中,頂點A的坐標為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉90°,第一次旋轉至圖①位置,第二次旋轉至圖②位置…,則正方形鐵片連續旋轉2017次后,點P的坐標為____________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
,
,
在
上,且
,過點
作射線
(AN與BC在AC同側),若動點
從點
出發,沿射線
勻速運動,運動速度為
/
,設點
運動時間為
秒.
(1)經過_______秒時,是等腰直角三角形?
(2)當于點
時,求此時
的值;
(3)過點作
于點
,已知
,請問是否存在點
,使
是以
為腰的等腰三角形?對存在的情況,請求出t的值,對不存在的情況,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,為了躲避臺風,一輪船一直由西向東航行,上午點,在
處測得小島
的方向是北偏東
,以每小時
海里的速度繼續向東航行,中午
點到達
處,并測得小島
的方向是北偏東
,若小島周圍
海里內有暗礁,問該輪船是否能一直向東航行?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a、b、c都是常數,且a≠0)的圖象與x軸交于點(﹣2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方,下列結論:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1>0.其中正確結論的個數是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com