【題目】設一列數中任意三個相鄰的數之和都是22,已知
,
,
,那么
=________.
【答案】5
【解析】
由任意三個相鄰數之和都是22,可知a1、a4、a7、…a3n+1相等,a2、a5、a8、…a3n+2相等,a3、a6、a9、…a3n相等,可以得出a19=a1=13,a66=a3=2x,根據可求出x的值,再根據任意三個相鄰的數之和都是22,可求出相鄰的三個數的值,問題得以解決.
解:由任意三個相鄰數之和都是22可知:
a1+a2+a3=22,
a2+a3+a4=22,
a3+a4+a5=22,
…
an+an+1+an+2=22,
可以推出:a1=a4=a7=…=a3n+1,
a2=a5=a8=…=a3n+2,
a3=a6=a9=…=a3n,
所以a19=a1=13,a66=a3,
則2x=6-x,
解得x=2,
所以a2=22-4-13=5,
因此a2018=a2=5.
故答案為:5.
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子中放有四張分別寫有數字1、2、3、4的紅色卡片和三張分別寫有1、2、3的藍色卡片,卡片除顏色和數字外其它完全相同.
(1)從中任意抽取一張卡片,求該卡片上寫有數字1的概率;
(2)將3張藍色卡片取出后放入另外一個不透明的盒子內,然后在兩個盒子內各任意抽取一張卡片,以紅色卡片上的數字作為十位數,藍色卡片上的數字作為個位數組成一個兩位數,求這個兩位數不小于22的概率(請利用樹狀圖或列表法說明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E在BC上,連接AD、AE,如果只添加一個條件使∠DAB=∠EAC,則添加的條件不能為( )
A. BD=CE B. AD=AE C. DA=DE D. BE=CD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分線,AD=20,則BC的長是 ( )
A. 20 B. 20 C. 30 D. 10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線EF與MN相交于點O,∠MOE=30°,將一直角三角尺的直角頂點與點O重合,直角邊OA與MN重合,OB在∠NOE內部.操作:將三角尺繞點O以每秒5°的速度沿順時針方向旋轉一周,設運動時間為t(s).
(1)當t為何值時,直角邊OB恰好平分∠NOE?此時OA是否平分∠MOE?請說明理由;
(2)若在三角尺轉動的同時,直線EF也繞點O以每秒8°的速度順時針方向旋轉一周,當一方先完成旋轉一周時,另一方同時停止轉動.
①當t為何值時,OE平分∠AOB?
②OE能否平分∠NOB?若能請直接寫出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】火車站、機場、郵局等場所都有為旅客提供打包服務的項目.現有一個長、寬、高分別為a、b 、30的箱子(其中a>b),準備采用如圖①、②的兩種打包方式,所用打包帶的總長(不計接頭處的長)分別記為.
(1)圖①中打包帶的總長=________.
圖②中打包帶的總長=________.
(2)試判斷哪一種打包方式更節省材料,并說明理由.(提醒:先判斷再說理,說理過程即為比較 的大小.)
(3)若b=40且a為正整數,在數軸上表示數的兩點之間有且只有19個整數點,求a 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著通訊技術的迅猛發展,人與人之間的溝通方式更多樣、便捷.某校數學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統計結果繪制了如下所示兩幅不完整的統計圖,請結合圖中所給信息,解答下列問題:
(1)本次調研活動共調研了多少名學生,表示“QQ”的扇形圓心角的度數是多少.
(2)請你補充完整條形統計圖;
(3)如果該校有2000名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,方格紙中的每個小方格都是邊長為1個單位長度的正方形,建立平面直角坐標系,△ABC的頂點均在格點上.(不寫作法)
(1)以原點O為對稱中心,畫出△ABC關于原點O對稱的△A1B1C1,并寫出B1的坐標;
(2)再把△A1B1C1繞點C1 順時針旋轉90°,得到△A2B2C1,請你畫出△A2B2C1,并寫出B2的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com