分析 根據等邊對等角和三角形內角和定理得:∠DEB+∠AED=90°,所以∠AEC=90°,由∠C=45°,可知△AEC是等腰三角形,根據勾股定理求AC的長.
解答 解:∵AD=DB=DE,
∴∠DAE=∠AED,∠B=∠DEB,
∵∠B+∠DEB+∠AED+∠DAE=180°,
∴2∠DEB+2∠AED=180°,
∴∠DEB+∠AED=90°,
∴∠AEC=90°,
∵∠C=45°,
∴△AEC是等腰三角形,
∴AE=EC=1,
∴AC=$\sqrt{2}$,
故答案為:$\sqrt{2}$.
點評 本題考查了等腰直角三角形的性質和判定、勾股定理、等腰三角形的性質,屬于基礎題,本題的關鍵是根據等邊對等角證得∠AEC=90°是關鍵.
科目:初中數學 來源: 題型:選擇題
A. | 0<m<2 | B. | -0.5<m<2 | C. | -0.5<m<1 | D. | -0.5<m<3 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | (3ab)3=27a3b3 | B. | 2m6÷(8m3)=0.25m3 | C. | 0.254×28=1 | D. | (2m•2n)ρ=2mnρ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com