【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC=65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE= ;
(2)如圖②,將直角三角板DOE繞點O順時針方向轉動到某個位置,若OC恰好平分∠AOE,求∠COD的度數;
(3)如圖③,將直角三角板DOE繞點O任意轉動,如果OD始終在∠AOC的內部,試猜想∠AOD和∠COE有怎樣的數量關系?并說明理由.
【答案】(1)25° (2)25° (3)
【解析】
(1)根據圖形得出∠COE=∠DOE-∠AOC,代入求出即可;
(2)根據角平分線定義求出∠EOA=2∠AOC=130°,代入∠EOC=∠BOA-∠AOC,求出∠EOC,代入∠COD=∠DOE-∠EOC求出即可;
(3)根據圖形得出∠AOD+∠COD=∠AOC=65°,∠COE+∠COD=∠DOE=90°,相減即可求出答案.
(1)如圖①,∠COE=∠DOE-∠AOC=90°-65°=25°;
(2)如圖②,∵OC平分∠EOA,∠AOC=65°,∴∠EOA=2∠AOC=130°,∵∠DOE=90°,∴∠AOD=∠AOE-∠DOE=40°,∵∠BOC=65°,∴∠COD=∠AOC-∠AOD=25°
(3)根據圖形得出∠AOD+∠COD=∠AOC=65°,∠COE+∠COD=∠DOE=90°
∴
∴
科目:初中數學 來源: 題型:
【題目】已知,數軸上點、
對應的數分別為
、
,且滿足
,點
對應點的數為-3.
(1)______,
______;
(2)若動點、
分別從
、
同時出發向右運動,點
的速度為3個單位長度/秒;點
的速度為1個單位長度/秒,求經過多長時間
、
兩點的距離為
;
(3)在(2)的條件下,若點運動到點
立刻原速返回,到達點
后停止運動,點
運動至點
處又以原速返回,到達點
后又折返向
運動,當點
停止運動點
隨之停止運動.求在整個運動過程中,兩點
,
同時到達的點在數軸上表示的數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數根;④拋物線與x軸的另一個交點是(-1,0);⑤當1<x<4時,有y2<y1,
其中正確的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校在“校園讀書節”活動中,購買甲、乙兩種圖書共100本作為獎品,已知乙種圖書的單價比甲種圖書的單價高出50%.同樣用360元購買乙種圖書比購買甲種圖書少4本.
(1)求甲、乙兩種圖書的單價各是多少元;
(2)如果購買圖書的總費用不超過3500元,那么乙種圖書最多能買多少本?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形OABC的邊長為2,頂點A,C分別在x軸,y軸的正半軸上,點E是BC的中點,F是AB延長線上一點且FB=1.
(1)求經過點O,A,E三點的拋物線解析式;
(2)點P在拋物線上運動,當點P運動到什么位置時△OAP的面積為2,請求出點P的坐標;
(3)在拋物線上是否存在一點Q,使△AFQ是等腰直角三角形?若存在直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國的國球是乒乓球,世界上乒乓球板的拍形大體上可以歸為三類:圓形、方形和異形,絕大多數的橫板與中國式的直板都是圓型的.如圖,李明同學自制一塊乒乓球拍,正面是半徑為8 cm的⊙O,弧AB的長為4πcm,弓形ACB(陰影部分)粘貼膠皮,則膠皮面積為( )
A. (32+48π)cm2 B. (16π﹣32)cm2 C. 64πcm2 D. (48π﹣32)cm2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,線段AB=CD,AB與CD相交于點O,且∠AOC=60°,CE是由AB平移所得,AC與BD不平行,則AC+BD與AB的大小關系是:AC+BD_____AB.(填“>”“<”或“=”)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新的交通法規實施后,駕校的考試規則也發生了變化,考試共設四個科目:科目1、科目2、科目3和科目4,以下簡記為:1、2、3、4.四個科目考試在同一地點進行,但每個學員每次只能夠參加一個科目考試.在某次考試中,對該考點各科目考試人數進行了調查統計,并根據調查結果繪制成如圖所示的條形統計圖和扇形統計圖(未完成),請結合圖中所給信息解答下列問題:
(1)本次被調查的學員共有 人;在被調查者中參加“科目3”測試的有 人;將條形統計圖補充完整;
(2)該考點參加“科目4”考試的學員里有3位是教師,某新聞部門準備在該考點參加“科目4”考試的學員中隨機選出2位,調查他們對新規的了解情況,請你用列表法或畫樹狀圖的方法求出所選兩位學員恰好都是教師的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校七年級共有500名學生,團委準備調查他們對“低碳”知識的了解程度,
(1)在確定調查方式時,團委設計了以下三種方案:
方案一:調查七年級部分女生;
方案二:調查七年級部分男生;
方案三:到七年級每個班去隨機調查一定數量的學生
請問其中最具有代表性的一個方案是 ;
(2)團委采用了最具有代表性的調查方案,并用收集到的數據繪制出兩幅不完整的統計圖(如圖①、圖②所示),請你根據圖中信息,將其補充完整;
(3)請你估計該校七年級約有多少名學生比較了解“低碳”知識.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com