【題目】如圖已知∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關系,并說明理由(根據解題的要求,在橫線處或括號內填寫適當的內容或理由).
解:∠AED=∠C.
理由如下:
∵∠1+∠4=180°,∠1+∠2=180°,
∴∠2=∠4,∴AB∥EF,
∴________________(兩直線平行,內錯角相等).
又∵∠3=∠B,∴∠B=∠ADE,
∴DE∥BC(____________________________),
∴∠AED=∠C(__________________________).
科目:初中數學 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,l1表示某公司一種產品一天的銷售收入與銷售量的關系,l2表示該公司這種產品一天的銷售成本與銷售量的關系.
(1)x=1時,銷售收入= 萬元,銷售成本= 萬元,盈利(收入﹣成本)= 萬元;
(2)一天銷售 件時,銷售收入等于銷售成本;
(3)l2對應的函數表達式是 ;
(4)你能寫出利潤與銷售量間的函數表達式嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點A、B、C在小正方形的頂點上.
在圖中畫出與
關于直線l成軸對稱的
;
三角形ABC的面積為______;
以AC為邊作與
全等的三角形,則可作出______個三角形與
全等;
在直線l上找一點P,使
的長最短.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為 ,sinA=
,求BH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,分別以AB、AC為邊作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,連接DC與BE.G、F分別是DC與BE的中點.
(1)求證:DC=BE;
(2)當∠DAB=80°,求∠AFG的度數;
(3)若∠DAB=,則∠AFG與
的數量關系是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點.
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】求一個正數的算術平方根,有些數可以直接求得,如,有些數則不能直接求得,如
,但可以通過計算器求. 還有一種方法可以通過一組數的內在聯系,運用規律求得,請同學們觀察下表:
n | 16 | 0.16 | 0.0016 | 1600 | 160000 | … |
4 | 0.4 | 0.04 | 40 | 400 | … |
(1)若,則
(2)根據你發現的規律,探究下列問題:已知≈1.435,則:
①≈ ;
②≈ ;
(3)根據上述探究過程類比研究一個數的立方根已知≈1.260,則
≈ .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com