A. | -1 | B. | -1或5 | C. | 5 | D. | -5 |
分析 由解析式可知該函數在x=h時取得最小值1、x>h時,y隨x的增大而增大、當x<h時,y隨x的增大而減小,根據1≤x≤3時,函數的最小值為5可分如下兩種情況:①若h<1≤x≤3,x=1時,y取得最小值5;②若1≤x≤3<h,當x=3時,y取得最小值5,分別列出關于h的方程求解即可.
解答 解:∵當x>h時,y隨x的增大而增大,當x<h時,y隨x的增大而減小,
∴①若h<1≤x≤3,x=1時,y取得最小值5,
可得:(1-h)2+1=5,
解得:h=-1或h=3(舍);
②若1≤x≤3<h,當x=3時,y取得最小值5,
可得:(3-h)2+1=5,
解得:h=5或h=1(舍).
綜上,h的值為-1或5,
故選:B.
點評 本題主要考查二次函數的性質和最值,根據二次函數的性質和最值分類討論是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,$\frac{13}{5}$) | B. | (-$\frac{2}{5}$,$\frac{13}{5}$) | C. | (-$\frac{4}{5}$,$\frac{12}{5}$) | D. | (-$\frac{3}{5}$,$\frac{12}{5}$) |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com