解:(1)AD=A’D,∠ADE=∠A’DE,(1分)
(2)∠2=∠DFA+∠A,∠DFA=∠1+∠A’(3分)
如圖②由圖形翻折變換的性質可知,∠A=∠A′,
連接AA′,
則∠2=∠DA′A+∠DAA′
=∠DA′E+∠EA′A+∠DAE+∠A′AE,
=2∠A+∠EA′A+∠A′AE
=2∠A+∠1即∠2-∠1=2∠A;
(3)當如圖③所示折疊時,
△CDE的周長=CD+CE+DE
=CD+CE+EB
=CD+CB
=

AC+CB

=

×6+8
=11;
當如圖④所示折疊時,
△CDE的周長=CD+CE+DE
=CD+CE+AE
=CD+AC
=

CB+AC
=

×8+6
=10.
分析:(1)根據圖形翻折變換的性質可知,AD=A’D,∠ADE=∠A’DE,由圖形翻折變換的性質可得到∠A=∠A′,再由∠2=∠DFA+∠A即可得出∠1+∠2=2∠A;
(2)由圖形翻折變換的性質可得到∠A=∠A′,再根據∠2=∠DA′A+∠DAA′即可求出答案;
(3)根據題意畫出圖形,再根據圖形翻折變換的性質即可得出結論.
點評:本題考查的是圖形翻折變換的性質,即圖形翻折變換后所得圖形與原圖形全等.