【題目】《九章算術》是我國古代數學成就的杰出代表作,書中記載:“今有中,不知大小.以鋸鋸之,深1寸,鋸道長1尺,問經幾何?“其意思為:“如圖,今有一圓形木材在墻中,不知其大小用鋸子去鋸這個木材,鋸口深DE=1寸,鋸道長AB=10寸,問這塊圓形木材的直徑是多少?”
科目:初中數學 來源: 題型:
【題目】如圖,用同樣規格黑白兩色的正方形瓷磚鋪設長方形地面,請觀察下列圖形,并解答有關問題:
(1)在第n個圖中,第一橫行共 塊瓷磚,第一豎列共有 塊瓷磚;(均用含n的代數式表示)鋪設地面所用瓷磚的總塊數為 (用含n的代數式表示,n表示第n個圖形)
(2)上述鋪設方案,鋪一塊這樣的長方形地面共用了506塊瓷磚,求此時n的值;
(3)是否存在黑瓷磚與白瓷磚塊數相等的情形?請通過計算加以說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE = AF
(1)求證:BE = DF;
(2)連接AC交EF于點O,延長OC至點M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E是邊長為1的正方形ABCD的對角線BD上一動點,點E從點B向點D運動(與點B,D不重合),過點E作直線GH∥BC,交AB于點G,交CD于點H,EF⊥AE,交CD(或CD的延長線)于點F.
(1)如圖①,求證:△AGE≌△EHF.
(2)在點E的運動過程中(如圖①,②),四邊形AFHG的面積是否會發生變化?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABD與△GDF都是等腰直角三角形,BD與DF均為斜邊(BD<DF).
(1)如圖1,B,D,F在同一直線上,過F作MF⊥GF于點F,取MF=AB,連結AM交BF于點H,連結GA,GM.
①求證:AH=HM;
②請判斷△GAM的形狀,并給予證明;
③請用等式表示線段AM,BD,DF的數量關系,并說明理由.
(2)如圖2,GD⊥BD,連結BF,取BF的中點H,連結AH并延長交DF于點M,請用等式直接寫出線段AM,BD,DF的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交AB于G,連接DG,現在有如下4個結論:①;②
;③
;④
在以上4個結論中,正確的有( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若將拋物線y=mx2﹣x﹣m(m≠0)在直線x=﹣1與直線x=1之間的部分記作圖象C,對于圖象C上任意一點P(a,b)均有﹣1≤b≤1成立,則m的取值范圍是___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點
的坐標為(
,
),點
的坐標為(
,
),點C的坐標為(
,
).
(1)在圖中作出的外接圓(利用格圖確定圓心);
(2)圓心坐標為 _____;外接圓半徑為 _____;
(3)若在軸的正半軸上有一點
,且
,則點
的坐標為 _____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com