日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖所示,在平面直角坐標(biāo)系中,⊙M經(jīng)過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數(shù)表達(dá)式;
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在⊙M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)表達(dá)式;
(3)設(shè)(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=
115
S△ABC?若存在,請求精英家教網(wǎng)出點P的坐標(biāo);若不存在,請說明理由.
分析:(1)根據(jù)“兩點法”可求直線AB解析式;
(2)求直徑AB,得半徑MC的值,由中位線定理得MN=
1
2
OB,CN=MC-MN,又CM垂直平分線段AO,可得C點橫坐標(biāo)及縱坐標(biāo),設(shè)拋物線頂點式,把B點坐標(biāo)代入即可求拋物線解析式;
(3)由(2)可求線段DE的長,△ABC的面積可求,這樣可求△PDE中DE邊上的高,可表示P點的縱坐標(biāo),代入拋物線解析式求P點橫坐標(biāo)即可.
解答:解:(1)設(shè)直線AB的函數(shù)表達(dá)式為y=kx+b(k≠0),
∵直線AB經(jīng)過A(-6,0),B(0,-8),
∴由此可得
-6k+b=0
b=-8

解得
k=-
4
3
b=-8

∴直線AB的函數(shù)表達(dá)式為y=-
4
3
x-8.
精英家教網(wǎng)
(2)在Rt△AOB中,由勾股定理,得AB=
AO2+OB2
=
62+82
=10

∵⊙M經(jīng)過O,A,B三點,且∠AOB=90°,
∴AB為⊙M的直徑,
∴半徑MA=5,
設(shè)拋物線的對稱軸交x軸于點N,
∵M(jìn)N⊥x,
∴由垂徑定理,得AN=ON=
1
2
OA=3.
在Rt△AMN中,MN=
MA2-AN2
=
52-32
=4

∴CN=MC-MN=5-4=1,
∴頂點C的坐標(biāo)為(-3,1),
設(shè)拋物線的表達(dá)式為y=a(x+3)2+1,
∵它經(jīng)過B(0,-8),
∴把x=0,y=-8代入上式,
得-8=a(0+3)2+1,解得a=-1,
∴拋物線的表達(dá)式為y=-(x+3)2+1=-x2-6x-8.

(3)如圖,連接AC,BC,
S△ABC=S△AMC+S△BMC=
1
2
•MC•AN+
1
2
MC•ON=
1
2
×5×3+
1
2
×5×3=15.
在拋物線y=-x2-6x-8中,設(shè)y=0,則-x2-6x-8=0,
解得x1=-2,x2=-4.
∴D,E的坐標(biāo)分別是(-4,0),(-2,0),∴DE=2;
設(shè)在拋物線上存在點P(x,y),使得S△PDE=
1
15
S△ABC=
1
15
×15=1,
則S△PDE=
1
2
•DE•|y|=
1
2
×2×|y|=1,∴y=±1,
當(dāng)y=1時,-x2-6x-8=1,解得x1=x2=-3,∴P1(-3,1);
當(dāng)y=-1時,-x2-6x-8=-1,解得x1=-3+
2
,x2=-3-
2

∴P2(-3+
2
,-1),P3(-3-
2
,-1).
綜上所述,這樣的P點存在,
且有三個,P1(-3,1),P2(-3+
2
,-1),P3(-3-
2
,-1).
點評:本題主要考查方程、函數(shù)、三角形、圓等基礎(chǔ)知識,考查綜合運用數(shù)學(xué)知識、分析問題、解決問題的能力,考查待定系數(shù)法、數(shù)形結(jié)合、方程與函數(shù)的思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網(wǎng)交于點A,過點A分別作x軸、y軸的垂線,垂足為點B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖所示,在平面直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(-2,0)和(2,0).月牙①繞點B順時針旋轉(zhuǎn)90°得到月牙②,則點A的對應(yīng)點A′的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系中,一顆棋子從點P處開始依次關(guān)于點A,B,C作循環(huán)對稱跳動,即第一次從點P跳到關(guān)于點A的對稱點M處,第二次從點M跳到關(guān)于點B的對稱點N處,第三次從點N跳到關(guān)于點C的對稱點處,…如此下去.
(1)在圖中標(biāo)出點M,N的位置,并分別寫出點M,N的坐標(biāo):
 

(2)請你依次連接M、N和第三次跳后的點,組成一個封閉的圖形,并計算這個圖形的面積;
(3)猜想一下,經(jīng)過第2009次跳動之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xoy中,有一組對角線長分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點重合),依上述排列方式,對角線長為n的第n個正方形的頂點An的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過A(-1,0)、B(3,0)兩點,拋物線與y軸交點為C,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線的解析式,并寫出頂點D的坐標(biāo);
(2)如果P點的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當(dāng)s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為P',請直接寫出P'點坐標(biāo),并判斷點P'是否在該拋物線上.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国内外成人在线视频 | 97久久精品人人澡人人爽 | 欧美日韩福利视频 | av成人一区二区 | www.av7788.com| 亚洲精美视频 | 成人久久18免费观看 | 日韩和的一区二区 | 欧美视频一区二区三区在线观看 | 久久99久久精品视频 | 夜夜操com | 91中文字幕在线观看 | www.污污视频 | 亚洲综合色视频在线观看 | www.欧美| 中文字幕日韩在线视频 | 国产成人一区 | 麻豆精品一区二区 | 欧美手机在线 | 成人在线精品视频 | 成人亚洲免费 | 免费在线观看国产 | 色婷婷久久久swag精品 | 狠狠干狠狠干 | 日韩在线视频二区 | 成人在线小视频 | 黄色影视在线观看 | 日韩中文字幕免费观看 | 日韩免费视频中文字幕 | 欧美视频精品在线观看 | 蜜臀va亚洲va欧美va天堂 | 天天澡天天狠天天天做 | 国产 日韩 欧美 中文 在线播放 | 中文字幕亚洲第一 | 国产亚洲女人久久久久毛片 | 成人国产精品免费观看 | 一区不卡 | 日韩中文一区二区 | 精品福利在线 | 日韩中文在线 | 日韩在线h|