分析:根據兩個連續自然數的和是21和兩個連續自然數的差是1,可運用:(和+差)÷2=大數,(和-差)÷2=小數,先求出這兩個連續自然數分別是10和11,又因為10和11是互質數,再根據互質的兩個數的乘積就是它們的最小公倍數解答即可.
解答:解:因為兩個連續自然數的和是21,差是1,
所以較大數:(21+1)÷2=11,較小數:(21-1)÷2=10,
又因為10和11是互質數,
所以10和11的最小公倍數是:10×11=110;
故答案為:110.
點評:此題主要考查和差問題,解答此題運用和差問題的基本關系式:(和+差)÷2=大數,(和-差)÷2=小數;也考查了兩個數為互質關系時的最小公倍數的方法.