日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設(shè)g(n)= ,∵g(n)= 在n∈N*上是減函數(shù).∴g(n)的最大值是g(1)=5, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
a2x+1
3x-1
(a∈N)
,方程f(x)=-2x+7有兩個根x1,x2,且x1<1<x2<3.
(1)求自然數(shù)a的值及f(x)的解析式;
(2)記等差數(shù)列{an}和等差數(shù)列{bn}的前n項和分別為Sn和Tn,且
Sn
Tn
=f(n),(n∈N*)
,設(shè)g(n)=
an
bn
,求g(n)的解析式及g(n)的最大值;
(3)在(2)小題的條件下,若a1=10,寫出數(shù)列{an}和{bn}的通項,并探究在數(shù)列{an}和{bn}中是否存在相等的項?若有,求這些相等項從小到大排列所成數(shù)列{cn}的通項公式;若沒有,請說明理由.

查看答案和解析>>

設(shè)f(x)=
1+ax
1-ax
a>0且a≠1),g(x)是f(x)的反函數(shù).
(Ⅰ)設(shè)關(guān)于x的方程求loga
t
(x2-1)(7-x)
=g(x)
在區(qū)間[2,6]上有實數(shù)解,求t的取值范圍;
(Ⅱ)當(dāng)a=e,e為自然對數(shù)的底數(shù))時,證明:
n
k=2
g(k)>
2-n-n2
2n(n+1)

(Ⅲ)當(dāng)0<a≤
1
2
時,試比較|
n
k=1
f(k)-n
|與4的大小,并說明理由.

查看答案和解析>>

對于定義域為I的函數(shù)y=f(x),如果存在區(qū)間[m,n]⊆I,同時滿足:①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是[m,n],f(x)值域也是[m,n],則稱[m,n]是函數(shù)y=f(x)的“好區(qū)間”.
(1)設(shè)g(x)=loga(ax-2a)+loga(ax-3a)(其中a>0且a≠1),判斷g(x)是否存在“好區(qū)間”,并說明理由;
(2)已知函數(shù)P(x)=
(t2+t)x-1t2x
(t∈R,t≠0)
有“好區(qū)間”[m,n],當(dāng)t變化時,求n-m的最大值.

查看答案和解析>>

已知函數(shù)f(x)=alnx+2x+3(a∈R)
(1)若函數(shù)f(x)在x=2處取得極值,求實數(shù)a的值;
(Ⅱ)若a=1,設(shè)g(x)=f(x)+kx,且不等式g′(x)≥0在X∈(0,2)上恒成立,求實數(shù)k的取值范圍;
(Ⅲ)在(I)的條件下,將函數(shù)f(x)的圖象關(guān)于y軸對稱得到函數(shù)φ(x)的圖象,再將函數(shù)φ(x)的圖象向右平移3個單位向下平移4個單位得到函數(shù)w(x)的圖象,試確定函數(shù)w(x)的單調(diào)性并根據(jù)單調(diào)性證明ln[2.3.4…(n+1))]2≤n(n+1)(n∈N,n>l).

查看答案和解析>>

(2012•菏澤一模)已知定義在區(qū)間[-2,t](t>-2)上的函數(shù)f(x)=(x2-3x+3)ex
(Ⅰ)當(dāng)t>1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m=f(-2),n=f(t).試證明:m<n;
(Ⅲ)設(shè)g(x)=f(x)+(x-2)ex,當(dāng)x>1時試判斷方程g(x)=x根的個數(shù).

查看答案和解析>>


同步練習(xí)冊答案
主站蜘蛛池模板: 日韩欧美精品在线 | 中文字幕 亚洲一区 | 亚洲免费在线观看 | 综合一区二区三区 | 欧美男男videos | 中文字幕免费在线 | v888av成人| 亚洲狠狠久久综合一区77777 | 亚洲乱码久久久 | 成人国产在线观看 | 91久久国产| 伊人久操| 欧美视频中文字幕 | 亚洲精品电影在线观看 | 久久精品国产99国产 | 在线看片日韩 | 日韩久久一区 | 九色在线 | 欧美视频在线免费看 | 欧美电影一区 | 日韩视频中文 | 久久精品日产第一区二区 | 欧美高清在线 | 国产精品成人一区二区三区夜夜夜 | 91社区影院 | 欧美激情精品久久久久 | 欧美激情视频一区二区三区在线播放 | 91亚洲日本aⅴ精品一区二区 | 日韩在线高清视频 | 探花在线观看 | 日本福利网站 | 五月婷婷六月情 | 成人a在线视频免费观看 | 精品欧美一区二区在线观看视频 | 精品国产乱码久久久久久久软件 | 亚洲不卡在线观看 | 免费黄色在线观看 | 日韩视频在线一区 | 欧美一卡二卡 | 国产不卡在线看 | 欧美另类一二三四 |