分析 根據題意得到$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$,依此規律即可求解.
解答 解:$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$=$\frac{7}{8}$
$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$=$\frac{15}{16}$
$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$+$\frac{1}{32}$=$\frac{31}{32}$
應用規律寫出:$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$+$\frac{1}{32}$+$\frac{1}{64}$+$\frac{1}{128}$=$\frac{127}{128}$.
故答案為:$\frac{7}{8}$;$\frac{15}{16}$;$\frac{31}{32}$.
點評 本題是較復雜的運算,先通過計算部分算式找出規律,然后根據規律化簡求解.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com