日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

因此.的最大值為. -----------14分 查看更多

 

題目列表(包括答案和解析)

已知函數的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數的值; 

(Ⅱ)求在區間上的最大值;

(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則

依題意得:,即    解得

第二問當時,,令,結合導數和函數之間的關系得到單調性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調遞減

極小值

單調遞增

極大值

單調遞減

。∴上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調遞增。∴最大值為

綜上,當時,即時,在區間上的最大值為2;

時,即時,在區間上的最大值為

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調遞增,  ∵     ∴,∴的取值范圍是

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合。

對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n):

記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   對如下數表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)設數表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因為

所以

(2)  不妨設.由題意得.又因為,所以

于是

    

所以,當,且時,取得最大值1。

(3)對于給定的正整數t,任給數表如下,

任意改變A的行次序或列次序,或把A中的每一個數換成它的相反數,所得數表

,并且,因此,不妨設

得定義知,

又因為

所以

     

     

所以,

對數表

1

1

1

-1

-1

 

綜上,對于所有的的最大值為

 

查看答案和解析>>

設函數

(Ⅰ) 當時,求的單調區間;

(Ⅱ) 若上的最大值為,求的值.

【解析】第一問中利用函數的定義域為(0,2),.

當a=1時,所以的單調遞增區間為(0,),單調遞減區間為(,2);

第二問中,利用當時, >0, 即上單調遞增,故上的最大值為f(1)=a 因此a=1/2.

解:函數的定義域為(0,2),.

(1)當時,所以的單調遞增區間為(0,),單調遞減區間為(,2);

(2)當時, >0, 即上單調遞增,故上的最大值為f(1)=a 因此a=1/2.

 

查看答案和解析>>

已知冪函數滿足

(1)求實數k的值,并寫出相應的函數的解析式;

(2)對于(1)中的函數,試判斷是否存在正數m,使函數,在區間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。

【解析】本試題主要考查了函數的解析式的求解和函數的最值的運用。第一問中利用,冪函數滿足,得到

因為,所以k=0,或k=1,故解析式為

(2)由(1)知,,因此拋物線開口向下,對稱軸方程為:,結合二次函數的對稱軸,和開口求解最大值為5.,得到

(1)對于冪函數滿足

因此,解得,………………3分

因為,所以k=0,或k=1,當k=0時,

當k=1時,,綜上所述,k的值為0或1,。………………6分

(2)函數,………………7分

由此要求,因此拋物線開口向下,對稱軸方程為:

時,,因為在區間上的最大值為5,

所以,或…………………………………………10分

解得滿足題意

 

查看答案和解析>>

設A是如下形式的2行3列的數表,

a

b

c

d

e

f

滿足性質P:a,b,c,d,e,f,且a+b+c+d+e+f=0

為A的第i行各數之和(i=1,2), 為A的第j列各數之和(j=1,2,3)記中的最小值。

(1)對如下表A,求的值

1

1

-0.8

0.1

-0.3

-1

(2)設數表A形如

1

1

-1-2d

d

d

-1

其中,求的最大值

(3)對所有滿足性質P的2行3列的數表A,求的最大值。

【解析】(1)因為,所以

(2)

因為,所以

所以

當d=0時,取得最大值1

(3)任給滿足性質P的數表A(如圖所示)

a

b

c

d

e

f

任意改變A的行次序或列次序,或把A中的每個數換成它的相反數,所得數表仍滿足性質P,并且,因此,不妨設

得定義知,

從而

     

所以,,由(2)知,存在滿足性質P的數表A使,故的最大值為1

【考點定位】此題作為壓軸題難度較大,考查學生分析問題解決問題的能力,考查學生嚴謹的邏輯思維能力

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 二区视频 | 九九热精品视频 | 一区二区三区四区在线 | www..99热| 国产欧美综合一区二区三区 | 免费在线小视频 | 日韩一区二区在线免费观看 | 羞羞视频在线免费 | 日韩在线一区二区 | 欧美一级在线视频 | 久久午夜视频 | 国产在线一区观看 | 成人免费视频播放 | 国产精品久久久久久久 | 日韩精品免费观看 | 国产日韩在线视频 | 91精品国产综合久久久蜜臀粉嫩 | 国内精品久久久久久中文字幕 | 99视频网站| 欧美黑人巨大久久久精品一区 | 欧美日韩在线播放 | hd国产人妖ts另类视频 | 日韩精品无码一区二区三区 | 91网站在线看| 日本一级二级三级久久久 | 国产精品99 | 精品一区av | 在线观看91精品国产入口 | 国产女人爽到高潮免费视频 | 精品一区二区三区免费看 | 日韩美女在线视频 | 男女羞羞视频在线观看免费 | 国产三级在线观看 | 国产乱轮在线视频 | 影视一区二区 | 欧美高清成人 | 在线观看国产视频 | 成人av在线播放 | www.亚洲精品 | 成人综合视频在线 | av电影一区二区 |