日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(1)求角的大小, 查看更多

 

題目列表(包括答案和解析)

某小區規劃一塊周長為2a(a為正常數)的矩形停車場,其中如圖所示的直角三角形ADP內為綠化區域.且∠PAC=∠CAB.設矩形的長AB=x,AB>AD
(1)求線段DP的長關于x的函數l(x)表達式并指出定義域;
(2)應如何規劃矩形的長AB,使得綠化面積最大?

查看答案和解析>>

(本小題12分)設函數.

(1)求函數的最大值和最小正周期;

設A,B,C為的三個內角,若且C為銳角,求.

查看答案和解析>>

(意大利餡餅問題)山姆的意大利餡餅屋中設有一個投鏢靶 該靶為正方形板.邊長為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機會贏得一種意大利餡餅中的一個,投鏢靶中畫有三個同心圓,圓心在靶的中心,當投鏢擊中半徑為1厘米的最內層圓域時.可得到一個大餡餅;當擊中半徑為1厘米到2厘米之間的環域時,可得到一個中餡餅;如果擊中半徑為2厘米到3厘米之間的環域時,可得到一個小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設每一個顧客都能投鏢中靶,并假設每個圓的周邊線沒有寬度,即每個投鏢不會擊中線上,試求一顧客將嬴得:

(a)一張大餡餅,

(b)一張中餡餅,

(c)一張小餡餅,

(d)沒得到餡餅的概率

查看答案和解析>>

(本小題滿分12分)

有一塊邊長為6m的正方形鋼板,將其四個角各截去一個邊長為x的小正方形,然后焊接成一個無蓋的蓄水池。

(Ⅰ)寫出以x為自變量的容積V的函數解析式V(x),并求函數V(x)的定義域;

(Ⅱ)指出函數V(x)的單調區間;

(Ⅲ)蓄水池的底邊為多少時,蓄水池的容積最大?最大容積是多少?

查看答案和解析>>


(本小題滿分12分) 已知向量,.
(1)若求向量的夾角;
(2)當時,求函數的最大值。

查看答案和解析>>

一. DCADB   CCDAC

二.11. (,3)∪(3,4)12.   13. 2  14.  9  15. 1

16.解:(Ⅰ)由已知得:,   ……………………… (3分)

是△ABC的內角,所以.     ………………………………… (6分)

(2)由正弦定理:,………………9分

又因為,,又是△ABC的內角,所以.………………12分

17.解:(I)由,得.??????????????4分

(II).????????????????7分

,得,又,所以,??????????11分

的取值范圍是.????????????????????????12分

18. 解:  (1) .…………………………6分

(2)原式

       .……………………………………………8分

19、解:(1)

 … 2分

的最小正周期, ???????????????????4分    

且當單調遞增.

的單調遞增區間(寫成開區間不扣分).??7分

 

(2)當,當,即

所以.?????????????????11分     

的對稱軸.??????????14分    

20.解:(Ⅰ)∵,當時,.

     ∴在[1,3]上是增函數.---------------------------------3分

     ∴當時,,即 -2≤≤26.

     所以當時,時,----4分

 ∴存在常數M=26,使得,都有≤M成立.

       故函數是[1,3]上的有界函數.---------------------------6分

(Ⅱ)∵. 由≤1,得≤1----------------8分

   ∴      ------------------------10分

,顯然上單調遞減,

則當t→+∞時,→1.  ∴

,顯然上單調遞減,

則當時,   ∴

      ∴0≤a≤1;                              

故所求a的取值范圍為0≤a≤1. -------------14分

 

 

 

 

 

21.解:(I) 由題意得 f (e) = pe--2ln e = qe- -2      ………… 1分

 Þ (p-q) (e + ) = 0       ………… 2分

而 e + ≠0

∴    p = q       ………… 3分

(II)  由 (I) 知 f (x) = px--2ln x

 f’(x) = p + -=   ………… 4分

令 h(x) = px 2-2x + p,要使 f (x) 在其定義域 (0,+¥) 內為單調函數,只需 h(x) 在 (0,+¥) 內滿足:h(x)≥0 或 h(x)≤0 恒成立.     ………… 5分

① 當 p = 0時, h(x) = -2x,∵ x > 0,∴ h(x) < 0,∴ f’(x) = - < 0,

∴    f (x) 在 (0,+¥) 內為單調遞減,故 p = 0適合題意.      ………… 6分

② 當 p > 0時,h(x) = px 2-2x + p,其圖象為開口向上的拋物線,對稱軸為 x = ∈(0,+¥),∴      h(x)min = p-

只需 p-≥1,即 p≥1 時 h(x)≥0,f’(x)≥0

∴    f (x) 在 (0,+¥) 內為單調遞增,

故 p≥1適合題意.      ………… 7分

③ 當 p < 0時,h(x) = px 2-2x + p,其圖象為開口向下的拋物線,對稱軸為 x = Ï (0,+¥)

只需 h(0)≤0,即 p≤0時 h(x)≤0在 (0,+¥) 恒成立.

故 p < 0適合題意.      ………… 8分

綜上可得,p≥1或 p≤0     ………… 9分

另解:(II)      由 (I) 知 f (x) = px--2ln x

 f’(x) = p + -= p (1 + )-      ………… 4分

要使 f (x) 在其定義域 (0,+¥) 內為單調函數,只需 f’(x) 在 (0,+¥) 內滿足:f’(x)≥0 或 f’(x)≤0 恒成立.    ………… 5分

由 f’(x)≥0 Û p (1 + )-≥0 Û p≥ Û p≥()max,x > 0

∵    ≤ = 1,且 x = 1 時等號成立,故 ()max = 1

∴    p≥1       ………… 7分

由 f’(x)≤0 Û p (1 + )-≤0 Û p≤  Û p≤()min,x > 0

而 > 0 且 x → 0 時,→ 0,故 p≤0    ………… 8分

綜上可得,p≥1或 p≤0     ………… 9分

(III) ∵    g(x) = 在 [1,e] 上是減函數

∴    x = e 時,g(x)min = 2,x = 1 時,g(x)max = 2e

即    g(x) Î [2,2e] ………… 10分

① p≤0 時,由 (II) 知 f (x) 在 [1,e] 遞減 Þ f (x)max = f (1) = 0 < 2,不合題意。       …11分

② 0 < p < 1 時,由x Î [1,e] Þ x-≥0

∴    f (x) = p (x-)-2ln x≤x--2ln x

右邊為 f (x) 當 p = 1 時的表達式,故在 [1,e] 遞增

∴    f (x)≤x--2ln x≤e--2ln e = e--2 < 2,不合題意。       ………… 12分

③ p≥1 時,由 (II) 知 f (x) 在 [1,e] 連續遞增,f (1) = 0 < 2,又g(x) 在 [1,e] 上是減函數

∴    本命題 Û f (x)max > g(x)min = 2,x Î [1,e]

 Þ f (x)max = f (e) = p (e-)-2ln e > 2

 Þ p >      ………… 13分

綜上,p 的取值范圍是 (,+¥) ………… 14分

 

 

 

 

 

 


同步練習冊答案
主站蜘蛛池模板: 一区二区不卡 | 二区久久 | 免费观看性欧美大片无片 | 国产精品69毛片高清亚洲 | 日韩欧美一区二区三区 | 欧美系列第一页 | 日本淫片| 99re| 亚洲一区二区三区四区的 | 国产永久免费 | 国产欧美精品一区二区三区四区 | 少妇久久久 | 黄网页在线观看 | 天天插天天操天天干 | 欧美色图一区 | 美日韩精品视频 | 国产高清成人久久 | 蜜臀av国产精品久久久久 | 国内精品一区二区 | 日韩视频在线播放 | 一区二区三区国产好 | 欧美日韩在线观看中文字幕 | 一区二区三区不卡视频 | 中国一级特黄毛片大片 | 性做久久久久久久免费看 | 九九热九九| 日韩av一区二区三区四区 | 91丁香| 国产一区二区 | 国产69精品久久久久观看黑料 | 国语对白做受欧美 | av在线免费观看一区二区 | 日韩精品在线观看一区 | 久久99精品久久久久久琪琪 | 一级女性全黄久久生活片免费 | 天天操狠狠操网站 | 欧美成人一区二免费视频软件 | 欧美一区二区三区在线播放 | a视频在线观看 | 日韩中文一区 | 守护甜心中文版 |