日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

因此的單調遞減區間為.而的單調遞增區間為. 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調遞減;當單調遞增,故當時,取最小值

于是對一切恒成立,當且僅當.       、

時,單調遞增;當時,單調遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調遞減;當時,單調遞增.故當,

從而,

所以因為函數在區間上的圖像是連續不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.

 

查看答案和解析>>

已知函數的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數的值; 

(Ⅱ)求在區間上的最大值;

(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則

依題意得:,即    解得

第二問當時,,令,結合導數和函數之間的關系得到單調性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調遞減

極小值

單調遞增

極大值

單調遞減

,,!上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調遞增!最大值為。

綜上,當時,即時,在區間上的最大值為2;

時,即時,在區間上的最大值為。

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 三级黄色视频毛片 | 超碰青青青 | 一区二区精品 | 亚洲一区中文字幕在线观看 | 国产精品久久久久久吹潮 | 国产成人a v | 亚洲精品一区中文字幕乱码 | 成人在线观看一区 | 欧美一级一级一级 | www.欧美 | 国产a免费 | 91欧美激情一区二区三区成人 | 久久久久久久久久久久国产精品 | av超碰在线观看 | 日韩精品久久久久久 | 亚洲一区二区三区四区五区中文 | 手机看片麻豆 | 久久婷婷国产麻豆91天堂 | 一区二区视频免费 | 国产激情偷乱视频一区二区三区 | 九九热精品免费视频 | 亚洲成人激情在线观看 | 亚洲精品成人无限看 | 久久成人国产精品 | 亚洲综合在线播放 | 久久久久国 | 久久国产精品视频观看 | 伊人欧美视频 | 国产成人精品一区二区三区网站观看 | 成人欧美一区二区三区黑人孕妇 | 91麻豆精品国产91久久久更新时间 | 国产免费视频在线 | 日韩欧美一二三区 | 销魂美女一区二区三区视频在线 | 久草视频在线播放 | 亚洲精品久久久久久一区二区 | 老牛嫩草一区二区三区眼镜 | 欧美日韩视频在线播放 | 韩国av一区二区 | 欧美不卡 | 毛片在线免费 |