日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè)

若(2)中的滿足對(duì)任意不小于2的正整數(shù)恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)過的直線與軌跡交于兩點(diǎn),又過作軌跡的切線,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、選擇題

       1.C            2.B            3.B            4.D                   5.B              6.C    

7.D            8.C       9.C       10.C

二、填空題

       11.           12.                  13.                   14.2            15.30°

三、解答題

16.解:(Ⅰ)由,根據(jù)正弦定理得,所以

為銳角三角形得.………………………………………………7分

(Ⅱ)根據(jù)余弦定理,得

所以,.………………………………………………14分

17.解:(Ⅰ)記表示事件:“位顧客中至少位采用一次性付款”,則表示事件:“位顧客中無人采用一次性付款”.

.………………………………………………7分

(Ⅱ)記表示事件:“位顧客每人購買件該商品,商場獲得利潤不超過元”.

表示事件:“購買該商品的位顧客中無人采用分期付款”.

表示事件:“購買該商品的位顧客中恰有位采用分期付款”.

.……………………………………14分

18.解法一:(1)作,垂足為,連結(jié),由側(cè)面底面,得底面

因?yàn)?sub>,所以,又,故為等腰直角三角形,

由三垂線定理,得.………………………7分

(Ⅱ)由(Ⅰ)知

依題設(shè)

,由

,作,垂足為

平面,連結(jié)為直線與平面所成的角.

所以,直線與平面所成角的正弦值為.………………………………………………14分

解法二:(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得平面

因?yàn)?sub>,所以

為等腰直角三角形,

如圖,以為坐標(biāo)原點(diǎn),軸正向,建立直角坐標(biāo)系

因?yàn)?sub>

,所以

,所以.…………………7分

(Ⅱ).

的夾角記為與平面所成的角記為,因?yàn)?sub>為平面的法向量,所以互余.

所以,直線與平面所成角的正弦值為.………………………14分

19.解:(Ⅰ)

因?yàn)楹瘮?shù)取得極值,則有

解得.………………………7分

(Ⅱ)由(Ⅰ)可知,

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),

所以,當(dāng)時(shí),取得極大值,又

則當(dāng)時(shí),的最大值為

因?yàn)閷?duì)于任意的,有恒成立,

所以 

解得 

因此的取值范圍為.………………………14分

20.解:(Ⅰ)設(shè)的公差為的公比為,則依題意有

解得

所以

.………………………6分

(Ⅱ)

,①

,②

②-①得

.………………………12分

21.證明:(Ⅰ)橢圓的半焦距

知點(diǎn)在以線段為直徑的圓上,

所以,.………………………6分

(Ⅱ)(?)當(dāng)的斜率存在且時(shí),的方程為,代入橢圓方程,并化簡得

設(shè),則

因?yàn)?sub>相交于點(diǎn),且的斜率為

所以,

四邊形的面積

當(dāng)時(shí),上式取等號(hào).………………………10分

(?)當(dāng)的斜率或斜率不存在時(shí),四邊形的面積.……………………11分

綜上,四邊形的面積的最小值為.………………………12分

 

 

 


同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 在线激情av| 欧美三级电影在线观看 | 成人免费观看cn | 中文二区| 久久精品小视频 | 国产一区二区在线播放 | 久久久中文字幕 | 亚洲一二三四在线 | 99亚洲视频 | a久久| 精品欧美乱码久久久久久 | 黑人巨大精品欧美一区二区小视频 | 国产91精品一区二区绿帽 | 在线观看中文 | 久久99网| 国产精品毛片一区视频播 | 99久久久久久 | 欧美三级不卡 | 久久免费精品 | 精品亚洲成a人片在线观看 99在线免费视频 | 欧美福利一区 | 欧美日韩在线精品 | 91在线免费视频 | 久久亚洲欧美日韩精品专区 | 色操插 | 国产精品久久国产愉拍 | 九九久久精品 | 国产精品久久久久影院色老大 | 久久久97| 蜜桃免费视频 | 亚洲精品午夜aaa久久久 | 久久久久毛片 | 国产一区精品在线 | 久久99精品久久久久久青青日本 | 九九天堂 | 国产一区二区电影 | 午夜草逼| 国产欧美在线视频 | 久久99精品久久久久久久久久久久 | 美女131mm久久爽爽免费 | 成人 在线 |