題目列表(包括答案和解析)
,
,
為常數,離心率為
的雙曲線
:
上的動點
到兩焦點的距離之和的最小值為
,拋物線
:
的焦點與雙曲線
的一頂點重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過直線
:
(
為負常數)上任意一點
向拋物線
引兩條切線,切點分別為
、
,坐標原點
恒在以
為直徑的圓內,求實數
的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程
第二問中,為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
借助于根與系數的關系得到即,
是方程
的兩個不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程
(Ⅱ)設為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
,
即,
是方程
的兩個不同的根,所以
由已知易得,即
在中,已知
,面積
,
(1)求的三邊的長;
(2)設是
(含邊界)內的一點,
到三邊
的距離分別是
①寫出所滿足的等量關系;
②利用線性規劃相關知識求出的取值范圍.
【解析】第一問中利用設中角
所對邊分別為
由得
又由得
即
又由得
即
又
又
得
即的三邊長
第二問中,①得
故
②
令依題意有
作圖,然后結合區域得到最值。
已知二次函數的二次項系數為
,且不等式
的解集為
,
(1)若方程有兩個相等的根,求
的解析式;
(2)若的最大值為正數,求
的取值范圍.
【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),
設出二次函數的解析式,然后利用判別式得到a的值。
第二問中,
解:(1)∵f(x)+2x>0的解集為(1,3),
①
由方程
②
∵方程②有兩個相等的根,
∴,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:
(2)由
由 解得:
故當f(x)的最大值為正數時,實數a的取值范圍是
已知函數,
(1)設常數,若
在區間
上是增函數,求
的取值范圍;
(2)設集合,
,若
,求
的取值范圍.
【解析】本試題主要考查了三角函數的性質的運用以及集合關系的運用。
第一問中利用
利用函數的單調性得到,參數的取值范圍。
第二問中,由于解得參數m的取值范圍。
(1)由已知
又因為常數,若
在區間
上是增函數故參數
(2)因為集合,
,若
已知函數.(
)
(1)若在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)在區間
上單調遞增,
則在區間
上恒成立. …………3分
即,而當
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區間上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當,即
時,同理可知,
在區間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使在此區間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當時,函數
的圖象恒在直線
下方.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com