題目列表(包括答案和解析)
(本題滿分14分)
已知實數(shù),曲線
與直線
的交點為
(異于原點
),在曲線
上取一點
,過點
作
平行于
軸,交直線
于點
,過點
作
平行于
軸,交曲線
于點
,接著過點
作
平行于
軸,交直線
于點
,過點
作
平行于
軸,交曲線
于點
,如此下去,可以得到點
,
,…,
,… . 設點
的坐標為
,
.
(Ⅰ)試用表示
,并證明
;
(Ⅱ)試證明,且
(
);
(本題滿分14分)
已知函數(shù)圖象上一點
處的切線方程為
.
(Ⅰ)求的值;
(Ⅱ)若方程在
內(nèi)有兩個不等實根,求
的取值范圍(其中
為自然對數(shù)的底數(shù));
(Ⅲ)令,若
的圖象與
軸交于
,
(其中
),
的中點為
,求證:
在
處的導數(shù)
.
(本題滿分14分)
已知曲線方程為
,過原點O作曲線
的切線
(1)求的方程;
(2)求曲線,
及
軸圍成的圖形面積S;
(本題滿分14分)
已知中心在原點,對稱軸為坐標軸的橢圓,左焦點,一個頂點坐標為(0,1)
(1)求橢圓方程;
(2)直線過橢圓的右焦點
交橢圓于A、B兩點,當△AOB面積最大時,求直線
方程。
(本題滿分14分)
如圖,在直三棱柱中,
,
,求二面角
的大小。
數(shù)學(理)
第I卷(共60分)
一、選擇題(每小題5分,共60分)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
C
C
A
A
A
A
D
B
A
A
第Ⅱ卷(共90分)
二、填空題(每小題4分,共16分)
13. 14.3 15.97 16.③
三、解答題(共74分)
17.(本小題滿分12分)
(I)的內(nèi)角和
。
,
(Ⅱ)
當即
時,
取最大值
18.(本題滿分12分)
記A:該夫婦生一個小孩是患病男孩,B:該夫婦生一個小孩是患病女孩:C:該夫婦生一個小孩是不患病男孩;D:該夫婦生一個小孩是不患病女孩,則
(I)
(Ⅱ)顯然,的取值為0,1,2,3
所以的分布列為
0
1
2
3
顯然,,故
19.(本題滿分12分)
解法一:(I)證明:連接,設
,連接DE
三棱柱
是正三棱柱,且
,
四邊形
是正方形,
∴E是的中點,又
是
的中點,
∴
∵平面
平面
,
∴平面
(Ⅱ)解:在平面內(nèi)作
于點
,在面
;內(nèi)作
于
連接
。
∵平面平面
,∴
平面
,
∵是
在平面
上的射影,
∴是二面角
的平面角
設在正
中,
在中,
在
中,
從而
所以,二面角的平面角的余弦值為
解法二:建立空間直角坐標系,如圖,
(I)證明:連接設
,連接
,設
則
平面
平面
平面
(Ⅱ)解:∵
設是平面
的法向量,則
,且
故,取
,得
;
同理,可求得平面的法向量是
設二面角的大小為
,則
所以,二面角的平面角的余弦值為
20.(本題滿分12分)
(I)
在
上是增函數(shù),
在
上恒成立,即
恒成立。
(當且僅當
時,等號成立),
所以
(Ⅱ)設,則
(1)當時,
最小值為
;
(2)當時,
最小值為
21.(本題滿分12分)
(I)將代入
得
,整理得
由得
,故
(Ⅱ)當兩條切線的斜率都存在而且不等于時,設其中一條的斜率為k,
則另外一條的斜率為
于是由上述結論可知橢圓斜率為k的切線方程為
①
又橢圓斜率為的切線方程為
②
由①得
由②得
兩式相加得
于是,所求P點坐標滿足
因此,
當一條切線的斜率不存在時,另一條切線的斜率必為0,此時顯然也有
所以為定值。
22.(本題滿分14分)
(I)由知
當時,
,化簡得
①
以代替
得
②
兩式相減得
則,其中
所以,數(shù)列為等差數(shù)列
(Ⅱ)由,結合(I)的結論知
于是不等式
因此,欲證原不等式成立,只需證即
令,則
在
上恒正,
在
上單調遞增,當
時,恒有
其他解法參照以上評分標準評分
本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com