題目列表(包括答案和解析)
已知曲線的參數(shù)方程是
(
是參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
:的極坐標(biāo)方程是
=2,正方形ABCD的頂點都在
上,且A,B,C,D依逆時針次序排列,點A的極坐標(biāo)為(2,
).
(Ⅰ)求點A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為上任意一點,求
的取值范圍.
【命題意圖】本題考查了參數(shù)方程與極坐標(biāo),是容易題型.
【解析】(Ⅰ)由已知可得,
,
,
,
即A(1,),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)設(shè),令
=
,
則=
=
,
∵,∴
的取值范圍是[32,52]
已知,設(shè)
和
是方程
的兩個根,不等式
對任意實數(shù)
恒成立;
函數(shù)
有兩個不同的零點.求使“P且Q”為真命題的實數(shù)
的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==
.
當(dāng)a∈[1,2]時,的最小值為3. 當(dāng)a∈[1,2]時,
的最小值為3.
要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==
.
當(dāng)a∈[1,2]時,的最小值為3.
要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即
解得實數(shù)m的取值范圍是(4,8]
已知函數(shù),
(1)設(shè)常數(shù),若
在區(qū)間
上是增函數(shù),求
的取值范圍;
(2)設(shè)集合,
,若
,求
的取值范圍.
【解析】本試題主要考查了三角函數(shù)的性質(zhì)的運用以及集合關(guān)系的運用。
第一問中利用
利用函數(shù)的單調(diào)性得到,參數(shù)的取值范圍。
第二問中,由于解得參數(shù)m的取值范圍。
(1)由已知
又因為常數(shù),若
在區(qū)間
上是增函數(shù)故參數(shù)
(2)因為集合,
,若
由已知得,
,
,
,
,
,
,
,
所以函數(shù)f(x)的值以6為周期重復(fù)性出現(xiàn).,所以f(2009)= f(5)=1,故選C.
答案:C.
【命題立意】:本題考查歸納推理以及函數(shù)的周期性和對數(shù)的運算.
設(shè)函數(shù)f(x)=在[1,+∞
上為增函數(shù).
(1)求正實數(shù)a的取值范圍;
(2)比較的大小,說明理由;
(3)求證:(n∈N*, n≥2)
【解析】第一問中,利用
解:(1)由已知:,依題意得:
≥0對x∈[1,+∞
恒成立
∴ax-1≥0對x∈[1,+∞恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),
∴n≥2時:f()=
(3) ∵ ∴
一、選擇題(本大題共8小題,每小題5分,共40分)
1.D 2.A 3.B 4.D 5.B 6.C 7.C 8.B
二、填空題(本大題共6小題,每小題5分,共30分)
9. 10.
11.5 10 12.
13.② 14.
三、解答題(本大題共6小題,共80分)
15.(共13分)
解:(Ⅰ)
.
因為函數(shù)的最小正周期為
,且
,
所以,解得
.
(Ⅱ)由(Ⅰ)得.
因為,
所以,
所以,
因此,即
的取值范圍為
.
16.(共14分)
解法一:
(Ⅰ)取中點
,連結(jié)
.
,
.
,
.
,
平面
.
平面
,
.
(Ⅱ),
,
.
又,
.
又,即
,且
,
平面
.
取中點
.連結(jié)
.
,
.
是
在平面
內(nèi)的射影,
.
是二面角
的平面角.
在中,
,
,
,
.
二面角
的大小為
.
(Ⅲ)由(Ⅰ)知平面
,
平面
平面
.
過作
,垂足為
.
平面
平面
,
平面
.
的長即為點
到平面
的距離.
由(Ⅰ)知,又
,且
,
平面
.
平面
,
.
在中,
,
,
.
.
點
到平面
的距離為
.
解法二:
(Ⅰ),
,
.
又,
.
,
平面
.
平面
,
.
(Ⅱ)如圖,以為原點建立空間直角坐標(biāo)系
.
則
.
設(shè).
,
,
.
取中點
,連結(jié)
.
,
,
,
.
是二面角
的平面角.
,
,
,
.
二面角
的大小為
.
(Ⅲ),
在平面
內(nèi)的射影為正
的中心
,且
的長為點
到平面
的距離.
如(Ⅱ)建立空間直角坐標(biāo)系.
,
點
的坐標(biāo)為
.
.
點
到平面
的距離為
.
17.(共13分)
解:(Ⅰ)記甲、乙兩人同時參加崗位服務(wù)為事件
,那么
,
即甲、乙兩人同時參加崗位服務(wù)的概率是
.
(Ⅱ)記甲、乙兩人同時參加同一崗位服務(wù)為事件,那么
,
所以,甲、乙兩人不在同一崗位服務(wù)的概率是.
(Ⅲ)隨機(jī)變量可能取的值為1,2.事件“
”是指有兩人同時參加
崗位服務(wù),
則.
所以,
的分布列是
1
3
18.(共13分)
解:
.
令,得
.
當(dāng),即
時,
的變化情況如下表:
0
當(dāng),即
時,
的變化情況如下表:
0
所以,當(dāng)時,函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增,
在上單調(diào)遞減.
當(dāng)時,函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增,在
上單調(diào)遞減.
當(dāng),即
時,
,所以函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞減.
19.(共14分)
解:(Ⅰ)由題意得直線的方程為
.
因為四邊形為菱形,所以
.
于是可設(shè)直線的方程為
.
由得
.
因為在橢圓上,
所以,解得
.
設(shè)兩點坐標(biāo)分別為
,
則,
,
,
.
所以.
所以的中點坐標(biāo)為
.
由四邊形為菱形可知,點
在直線
上,
所以,解得
.
所以直線的方程為
,即
.
(Ⅱ)因為四邊形為菱形,且
,
所以.
所以菱形的面積
.
由(Ⅰ)可得,
所以.
所以當(dāng)時,菱形
的面積取得最大值
.
20.(共13分)
(Ⅰ)解:,
,
;
,
.
(Ⅱ)證明:設(shè)每項均是正整數(shù)的有窮數(shù)列為
,
則為
,
,
,
,
,
從而
.
又,
所以
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com