題目列表(包括答案和解析)
答卷前,考生務必用黑色字跡的鋼筆或簽字筆將自己的姓名、班級和考號填寫在答題卷上。
已知A、B兩地的路程為240千米.某經銷商每天都要用汽車或火車將噸保鮮品一次 性由A地運往B地.受各種因素限制,下一周只能采用汽車和火車中的一種進行運輸,且須提前預訂.
現有貨運收費項目及收費標準表、行駛路程s(千米)與行駛時間t(時)的函數圖象(如圖1)、上周貨運量折線統計圖(如圖2)等信息如下:
貨運收費項目及收費標準表
運輸工具 |
運輸費單價:元/(噸?千米) |
冷藏費單價:元/(噸?時) |
固定費用:元/次 |
汽車 |
2 |
5 |
200 |
火車 |
1.6 |
5 |
2280 |
(1)汽車的速度為 千米/時,火車的速度為 千米/時:
(2)設每天用汽車和火車運輸的總費用分別為汽(元)和
火(元),分別求
汽、
火與
的函數關系式(不必寫出
的取值范圍),及
為何值時
汽>
火(總費用=運輸費+冷藏費+固定費用)
(3)請你從平均數、折線圖走勢兩個角度分析,建議該經銷商應提前為下周預定哪種運輸工具,才能使每天的運輸總費用較省?
2 | 3 |
一、選擇題(本大題共8小題,每小題5分,共40分)
1.D 2.A 3.B 4.D 5.B 6.C 7.C 8.B
二、填空題(本大題共6小題,每小題5分,共30分)
9. 10.
11.5 10 12.
13.② 14.
三、解答題(本大題共6小題,共80分)
15.(共13分)
解:(Ⅰ)
.
因為函數的最小正周期為
,且
,
所以,解得
.
(Ⅱ)由(Ⅰ)得.
因為,
所以,
所以,
因此,即
的取值范圍為
.
16.(共14分)
解法一:
(Ⅰ)取中點
,連結
.
,
.
,
.
,
平面
.
平面
,
.
(Ⅱ),
,
.
又,
.
又,即
,且
,
平面
.
取中點
.連結
.
,
.
是
在平面
內的射影,
.
是二面角
的平面角.
在中,
,
,
,
.
二面角
的大小為
.
(Ⅲ)由(Ⅰ)知平面
,
平面
平面
.
過作
,垂足為
.
平面
平面
,
平面
.
的長即為點
到平面
的距離.
由(Ⅰ)知,又
,且
,
平面
.
平面
,
.
在中,
,
,
.
.
點
到平面
的距離為
.
解法二:
(Ⅰ),
,
.
又,
.
,
平面
.
平面
,
.
(Ⅱ)如圖,以為原點建立空間直角坐標系
.
則
.
設.
,
,
.
取中點
,連結
.
,
,
,
.
是二面角
的平面角.
,
,
,
.
二面角
的大小為
.
(Ⅲ),
在平面
內的射影為正
的中心
,且
的長為點
到平面
的距離.
如(Ⅱ)建立空間直角坐標系.
,
點
的坐標為
.
.
點
到平面
的距離為
.
17.(共13分)
解:(Ⅰ)記甲、乙兩人同時參加崗位服務為事件
,那么
,
即甲、乙兩人同時參加崗位服務的概率是
.
(Ⅱ)記甲、乙兩人同時參加同一崗位服務為事件,那么
,
所以,甲、乙兩人不在同一崗位服務的概率是.
(Ⅲ)隨機變量可能取的值為1,2.事件“
”是指有兩人同時參加
崗位服務,
則.
所以,
的分布列是
1
3
18.(共13分)
解:
.
令,得
.
當,即
時,
的變化情況如下表:
0
當,即
時,
的變化情況如下表:
0
所以,當時,函數
在
上單調遞減,在
上單調遞增,
在上單調遞減.
當時,函數
在
上單調遞減,在
上單調遞增,在
上單調遞減.
當,即
時,
,所以函數
在
上單調遞減,在
上單調遞減.
19.(共14分)
解:(Ⅰ)由題意得直線的方程為
.
因為四邊形為菱形,所以
.
于是可設直線的方程為
.
由得
.
因為在橢圓上,
所以,解得
.
設兩點坐標分別為
,
則,
,
,
.
所以.
所以的中點坐標為
.
由四邊形為菱形可知,點
在直線
上,
所以,解得
.
所以直線的方程為
,即
.
(Ⅱ)因為四邊形為菱形,且
,
所以.
所以菱形的面積
.
由(Ⅰ)可得,
所以.
所以當時,菱形
的面積取得最大值
.
20.(共13分)
(Ⅰ)解:,
,
;
,
.
(Ⅱ)證明:設每項均是正整數的有窮數列為
,
則為
,
,
,
,
,
從而
.
又,
所以
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com