日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

③觀察每個方程組的兩個方程中.的系數及常數項有何關系?④構造一個類似的方程組.快速求出它的解.并簡單說明速解的理由. 查看更多

 

題目列表(包括答案和解析)

我國著名數學家華羅庚曾說過:撌?斃問鄙僦憊郟?紊偈?蹦訝胛ⅲ皇?謂岷習侔愫茫?衾敕旨彝蚴灤輸.數學中,數和形是兩個最主要的研究對象,它們之間有著十分密切的聯系,在一定條件下,數和形之間可以相互轉化,相互滲透.

數形結合的基本思想,就是在研究問題的過程中,注意把數和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數量關系的問題,或者把數量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.

例如,求1234+…+n的值,其中n是正整數.

對于這個求和問題,如果采用純代數的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.

如果采用數形結合的方法,即用圖形的性質來說明數量關系的事實,那就非常的直觀.現利用圖形的性質來求1234+…+n 的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為123,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數恰為所求式子1234+…+n的值.為求式子的值,現把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n1)個小圓圈,所以組成平行四邊形小圓圈的總個數為nn1)個,因此,組成一個三角形小圓圈的個數為,即1234+…+n

(1)仿照上述數形結合的思想方法,設計相關圖形,求1357+…+(2n1)的值,其中 n 是正整數.(要求:畫出圖形,并利用圖形做必要的推理說明)

(2)試設計另外一種圖形,求1357+…+(2n1)的值,其中n是正整數.(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

數形結合的基本思想,就是在研究問題的過程中,注意把數和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數量關系的問題,或者把數量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如,求1+2+3+4+…+n的值,其中n是正整數.
對于這個求和問題,如果采用純代數的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.
如果采用數形結合的方法,即用圖形的性質來說明數量關系的事實,那就非常的直觀.現利用圖形的性質來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數恰為所求式子1+2+3+4+…+n的值.為求式子的值,現把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數為n(n+1)個,因此,組成一個三角形小圓圈的個數為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2
精英家教網
(1)仿照上述數形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數.(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數.(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

數形結合的基本思想,就是在研究問題的過程中,注意把數和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數量關系的問題,或者把數量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如,求1+2+3+4+…+n的值,其中n是正整數.
對于這個求和問題,如果采用純代數的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.
如果采用數形結合的方法,即用圖形的性質來說明數量關系的事實,那就非常的直觀.現利用圖形的性質來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數恰為所求式子1+2+3+4+…+n的值.為求式子的值,現把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數為n(n+1)個,因此,組成一個三角形小圓圈的個數為數學公式,即1+2+3+4+…+n=數學公式
(1)仿照上述數形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數.(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數.(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

數形結合的基本思想,就是在研究問題的過程中,注意把數和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數量關系的問題,或者把數量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.例如,求1+2+3+4+…+n的值,其中n是正整數.對于這個求和問題,如果采用純代數的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.如果采用數形結合的方法,即用圖形的性質來說明數量關系的事實,那就非常的直觀.現利用圖形的性質來求1+2+3+4+…+n 的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數恰為所求式子1+2+3+4+…+n的值.為求式子的值,現把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數為n(n+1)個,因此,組成一個三角形小圓圈的個數為,即1+2+3+4+…+n=
(1)仿照上述數形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中 n 是正整數.(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數。(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

我國著名數學家華羅庚曾說過:“數缺形時少直觀,形少數時難入微;數形結合百般好,隔離分家萬事休”.數學中,數和形是兩個最主要的研究對象,它們之間有著十分密切的聯我我國著名數學家華羅庚曾說過:“數缺形時少直觀,形少數時難入微;數形結合百般好,隔離分家萬事休”.數學中,數和形是兩個最主要的研究對象,它們之間有著十分密切的聯系,在一定條件下,數和形之間可以相互轉化,相互滲透.
數形結合的基本思想,就是在研究問題的過程中,注意把數和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數量關系的問題,或者把數量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案. 例如:求1+2+3+4+…+n的值,其中n是正整數.
對于這個求和問題,如果采用純代數的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.
如果采用數形結合的方法,即用圖形的性質來說明數量關系的事實,那就非常的直觀.現利用圖形的性質來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數恰為所求式子1+2+3+4+…+n的值.為求式子的值,現把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數為n(n+1)個,因此,組成一個三角形小圓圈的個數為,即1+2+3+4+…+n=
(1)仿照上述數形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整數.(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設計另外一種圖形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整數.(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 国产精品国色综合久久 | 欧洲一级毛片 | 99re热精品视频 | 91视频免费观看 | 中文天堂在线观看视频 | 91人人| 久久精品免费一区二区三区 | 日韩免费看 | 激情久久久 | 99久久精品久久亚洲精品 | 国产精品久久久久久久久久久免费看 | 中文字幕在线不卡 | 再深点灬舒服灬太大了添少妇视频 | 国产精品99久久久久久久久 | 国产一级毛片电影 | 天天添 | 艹逼视频在线免费观看 | 精品国产三级 | 永久黄网站色视频免费 | 在线三级av | 蜜桃精品视频在线 | 亚洲专区国产精品 | 蜜臀久久99精品久久久久久宅男 | 国产精品久久久99 | 一区二区在线观看视频 | 中文字幕二区 | 亚洲a级 | 欧美激情国产日韩精品一区18 | 日本一二三区视频 | 日韩免费在线视频 | 欧美精品一区二区三区四区五区 | 国产精品久久久久高潮色老头 | 欧美精品一区二区三区在线播放 | 亚洲综合色视频在线观看 | 免费中文字幕 | 国产精品亚洲视频 | 亚洲色图第一区 | 日韩 国产 在线 | 国产 日韩 欧美 中文 在线播放 | 亚洲精品免费在线观看 | 成人免费淫片aa视频免费 |