日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設在的最小值為.依題意有. 查看更多

 

題目列表(包括答案和解析)

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數x恒成立,求實數b的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為,求實數a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數x恒成立,求實數b的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01

(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數x恒成立,求實數b的取值范圍.

查看答案和解析>>

甲船由島出發向北偏東的方向作勻速直線航行,速度為海里∕小時,在甲船從島出發的同時,乙船從島正南海里處的島出發,朝北偏東的方向作勻速直線航行,速度為海里∕小時。

⑴求出發小時時兩船相距多少海里?

⑴   兩船出發后多長時間相距最近?最近距離為多少海里?

【解析】第一問中根據時間得到出發小時時兩船相距的海里為

第二問設時間為t,則

利用二次函數求得最值,

解:⑴依題意有:兩船相距

答:出發3小時時兩船相距海里                           

⑵兩船出發后t小時時相距最近,即

即當t=4時兩船最近,最近距離為海里。

 

查看答案和解析>>

已知函數的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數的值; 

(Ⅱ)求在區間上的最大值;

(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則。

依題意得:,即    解得

第二問當時,,令,結合導數和函數之間的關系得到單調性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調遞減

極小值

單調遞增

極大值

單調遞減

,,!上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調遞增!最大值為。

綜上,當時,即時,在區間上的最大值為2;

時,即時,在區間上的最大值為

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 久久久久久久国产精品 | 久久精品色欧美aⅴ一区二区 | 久久久久久久久久久久影院 | 毛片一区二区三区 | 日韩专区一区二区三区 | 国产精品视频播放 | 天天摸夜夜操 | 三区在线观看 | 国产精品久久精品 | 日日天天 | 国产在线日本 | 国产成人在线网站 | 九一视频在线免费观看 | 欧美午夜精品理论片a级按摩 | 日韩在线观看毛片 | 国产精品久久久久毛片软件 | 亚洲一区二区三区四区五区中文 | 极品av| 中文字幕欧美日韩一区 | 午夜免费一区二区播放 | 五月婷婷免费视频 | 国产精品亚洲一区二区三区 | 超碰在线天天 | 欧美一区二区三区成人 | www.99日本精品片com | 一区二区三区免费看 | 黄色小视频在线观看 | 成人国产精品免费网站 | 欧洲亚洲视频 | 久久亚洲91 | 国产精品99久久免费观看 | 欧美1区 | 欧美日韩电影一区二区 | 亚洲精品99久久久久中文字幕 | 欧美午夜精品一区二区三区 | 国产一级免费视频 | 欧美一区二| 亚洲成人另类 | porn一区 | 亚洲黄色免费观看 | 国产亚洲精品成人av久久ww |