日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

解:(Ⅰ)依題意得 ----2分 查看更多

 

題目列表(包括答案和解析)

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01

(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數x恒成立,求實數b的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為,求實數a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數x恒成立,求實數b的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01

(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數x恒成立,求實數b的取值范圍.

查看答案和解析>>

設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設點P的坐標為.由題意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設點P的坐標為.

由條件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設點P的坐標為.

由P在橢圓上,有

因為,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

已知,函數

(1)當時,求函數在點(1,)的切線方程;

(2)求函數在[-1,1]的極值;

(3)若在上至少存在一個實數x0,使>g(xo)成立,求正實數的取值范圍。

【解析】本試題中導數在研究函數中的運用。(1)中,那么當時,  又    所以函數在點(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當時,  又    

∴  函數在點(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設

求導,得

    

在區間上為增函數,則

依題意,只需,即 

解得  (舍去)

則正實數的取值范圍是(

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 日韩在线免费 | 欧美涩涩视频 | 精品国产欧美一区二区三区不卡 | 欧美日韩一区精品 | 欧美片网站 | 观看av| 日韩一区二区三区精品 | 亚洲黑人在线观看 | 日韩高清中文字幕 | 91大神免费在线观看 | 91麻豆产精品久久久 | 99精品99| 一区二区三区视频在线免费观看 | 欧美专区在线 | 日本理论片好看理论片 | 日韩av一区在线观看 | 精品国产一区二区三区性色 | 午夜视频网站 | 麻豆精品一区二区 | 亚洲一二三 | 台湾av在线 | 成人黄页在线观看 | 福利视频一区 | 国产精品久久久久免费a∨ 国产激情一区二区三区 | 国产情侣一区二区三区 | 国产成人午夜精品5599 | 中文字幕av一区二区 | 黄色网址免费在线观看 | 国产精品视频久久久 | 亚洲性图视频 | av网站观看 | 自拍偷拍小视频 | 久久综合av | 色婷综合 | 欧美激情一区二区三级高清视频 | 黄色成人在线 | 国产小视频网站 | 欧美a级成人淫片免费看 | 成人亚洲视频 | av一二三区| 热久久这里只有精品 |