日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

1.第Ⅱ卷共6頁.用鋼筆或圓珠筆直接答在試題卷上. 查看更多

 

題目列表(包括答案和解析)

(14分)已知函數(shù)f(x)=在定義域內(nèi)為奇函數(shù),

且f(1)=2,f()=;

(1)確定函數(shù)的解析式;

(2)用定義證明f(x)在[1,+∞)上是增函數(shù);

第6頁(共6頁)

 
(3)解不等式f(t2+1)+f(-3+3t-2t2)<0.

查看答案和解析>>

   如圖,在底面為直角梯形的四棱錐平面

⑴求證:

⑵求直線與平面所成的角;

⑶設(shè)點(diǎn)在棱上,

∥平面,求的值.

 

 

第4頁(共6頁)

 
 

 

查看答案和解析>>

 設(shè)函數(shù).

      (Ⅰ)求的單調(diào)區(qū)間和極值;

(Ⅱ)是否存在實(shí)數(shù),使得關(guān)于的不等式的解集為?若存在,求的取值范圍;若不存在,試說明理由.

 

 

 

 

 

 

第5頁(共6頁)

 
 

 

查看答案和解析>>

 等差數(shù)列{}前n項(xiàng)和為,滿足,則下列結(jié)論中正確的是(     )

第1頁(共6頁)

 
A、中的最大值      B、中的最小值      C、=0       D、=0

 

查看答案和解析>>

 如圖,已知平面平面是平面與平面

交線上的兩個(gè)定點(diǎn),,且

,在平面上有一個(gè)動(dòng)點(diǎn)

使得,則的面積的最大值是(    ) 

第2頁(共6頁)

 
 A      B      C       D  24

 

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答題:本大題共6個(gè)小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

 

17.解:(Ⅰ)∵l1∥l2

,????????????????????????????????????????????????????????????????????????????????????????? 3分

.????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵

,∴,當(dāng)且僅當(dāng)時(shí)取"=".??????????? 8分

,∴,?????????????????????????????????????????? 10分

,當(dāng)且僅當(dāng)時(shí)取"=".

故△ABC面積取最大值為.??????????????????????????????????????????????????????????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三個(gè)球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率;??????????????????????????????????????? 1分

②三次取球中有2次出現(xiàn)最大數(shù)字3的概率;???????????????????? 3分

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率.????????????????? 5分

∴P(ξ=3)=P1+P2+P3=.?????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)在ξ=k時(shí), 利用(Ⅰ)的原理可知:

(k=1、2、3、4).???????? 8分

則ξ的概率分布列為:

ξ

1

2

3

4

P

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分

∴ξ的數(shù)學(xué)期望Eξ=1×+2×+3×+4× = .???????????????????????????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點(diǎn),連接BO,則BO⊥AA1. 2分

∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點(diǎn),建立如圖空間直角坐標(biāo)系,則.則.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

設(shè)是平面ABC的一個(gè)法向量,

,則.設(shè)A1到平面ABC的距離為d.

.??????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個(gè)法向量是,又平面ACC1的一個(gè)法向量.   9分

.???????????????????????????????????????????????????????????? 11分

∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

 

20.解:(Ⅰ),對(duì)稱軸方程為,故函數(shù)在[0,1]上為增函數(shù),∴.?????????????????????????????????????????????????????????????????????????????????????? 2分

當(dāng)時(shí),.??????????????????????????????????????????????????????????????????????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????????????????????????????????????????? 4分

,∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.

,∴.?????????????????????????????????????????????????? 6分

(Ⅱ)∵,∴

???????????????????????????????????????????????????????? 7分

可知:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),

?????????????????????????????????????????????????????????????????????????? 10分

可知存在正整數(shù)或6,使得對(duì)于任意的正整數(shù)n,都有成立.???????????? 12分

 

21.解:(Ⅰ)設(shè)

.∵

,∴,∴.??????????????????????????????????????????????????????????????? 2分

則N(c,0),M(0,c),所以

,則

∴橢圓的方程為.??????????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)∵圓O與直線l相切,則,即,????????????????????????????????? 5分

消去y得

∵直線l與橢圓交于兩個(gè)不同點(diǎn),設(shè)

,???????????????????????????????????????????????????????????????? 7分

.?????????????????? 8分

.???????????????????????????????????????? 9分

(或).

設(shè),則

,則

時(shí)單調(diào)遞增,????????????????????????????????????????????????????????????????????????? 11分

∴S關(guān)于μ在區(qū)間單調(diào)遞增,

.??????????????????????????????????????????????????????????????????????????????????????????????????? 12分

(或

∴S關(guān)于u在區(qū)間單調(diào)遞增,?????????????????????????????????????????????????????????????????????? 11分

.)????????????????????????????????????????????????????????? 12分

 

22.解:(Ⅰ)因?yàn)?sub>,則,     1分

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞增;在上單調(diào)遞減,

∴函數(shù)處取得極大值.????????????????????????????????????????????????????????????????????? 2分

∵函數(shù)在區(qū)間(其中)上存在極值,

解得.????????????????????????????????????????????????????????????????????????????????? 3分

(Ⅱ)不等式,即為,?????????????????????????????????????????? 4分

,∴,??????? 5分

,則,∵,∴上遞增,

,從而,故上也單調(diào)遞增,

.???????????????????????????????????????????????????????????????????????????????????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??????????? 8分

,????????????????????????????????????????????????????? 9分

………

,?????????????????????????????????????????????????????????????????????????????????? 10分

疊加得:

.???????????????????????????????????????????????????????????????????????? 12分

.????????????????????????????????????????????????????????????????????????? 14分

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 亚洲精品一区久久久久久 | 日韩一区二区三区在线视频 | 成人免费crm一区二区 | 亚洲777 | 欧美色v | 性色av网 | 国产视频亚洲 | 97久久精品午夜一区二区 | 国产96视频 | 最新中文字幕在线观看 | 99精品国产高清一区二区麻豆 | 福利精品视频 | 日韩成人影院 | 亚洲成人日本 | 美女超碰在线 | 色婷婷综合久久久 | 日韩免费av网站 | 精品久久久久久久久久久久久久 | 99精品全国免费观看视频软件 | 国产一区二区三区高清 | 成人免费视频网站在线观看 | 国产探花 | 国产高清不卡一区二区三区 | 91在线免费看 | 久久情趣视频 | 亚洲日本欧美日韩高观看 | 美女午夜影院 | www在线播放 | 亚洲一区 中文字幕 | 日本亚洲一区 | 三级视频在线 | 日本成人一区二区三区 | 嫩草影院网站入口 | 欧美性猛交一区二区三区精品 | 日韩欧美在线观看视频 | 欧美精品在线观看免费 | 成人黄色免费在线视频 | 欧美精品99 | 欧美视频一区二区 | 97国产在线 | 2019亚洲日韩新视频 |