題目列表(包括答案和解析)
(本小題滿分12分)
有編號為,
,…
的10個零件,測量其直徑(單位:cm),得到下面數據:
其中直徑在區間[1.48,1.52]內的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(ⅰ)用零件的編號列出所有可能的抽取結果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==
.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:
,
,
,
,
,
,
共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,
,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
.給出下列命題:
①命題“若b2-4ac<0,則方程ax2+bx+c=0(a≠0)無實根”的否命題;
②命題在“△ABC中,AB=BC=CA,那么△ABC為等邊三角形”的逆命題;
③命題“若a>b>0,則>
>0”的逆否命題;
④若“m>1,則mx2-2(m+1)x+(m-3)>0的解集為R”的逆命題.
其中真命題的序號為________.
已知函數f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數x只有一個.
(1)求函數f(x)的表達式;
(2)若數列{an}滿足a1=,an+1=f(an),bn=
-1,n∈N*,證明數列{bn}是等比數列,并求出{bn}的通項公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數列,q=.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=+
+…+
<
+
+…+
==1-
<1(n∈N*).
A.p:0=;q:0∈
B.p:等腰三角形都是銳角三角形;q:正三角形都相似
C.p:=U;q:
=
D.p:不等式|x|>x的解集為{x|x<0=;q:不等式|x|≤x的解集為
(09年湖北鄂州5月模擬文)(13分)設f (x)=,方程f (x)=x有唯一解,數列{xn}滿足f (x1)=1,
xn+1=f (xn)(n∈N*).
⑴求數列{xn}的通項公式;
⑵已知數列{an}滿足湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com