題目列表(包括答案和解析)
把函數的圖象按向量
平移得到函數
的圖象.
(1)求函數的解析式; (2)若
,證明:
.
【解析】本試題主要考查了函數 平抑變換和運用函數思想證明不等式。第一問中,利用設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入
,便可以得到結論。第二問中,令
,然后求導,利用最小值大于零得到。
(1)解:設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 證明:令,……6分
則……8分
,∴
,∴
在
上單調遞增.……10分
故,即
把函數的圖象按向量
平移得到函數
的圖象.
(I)若試比較
的大小,并說明理由;
(II)若不等式.當
時恒成立,求實數m的取值范圍.
把函數的圖象按向量
平移后,得到函數
的圖象,若函數
的圖象與
的圖象關于直線
對稱,則
的解析式是( )
A. B.
a |
π |
3 |
A、y=cos(x+
| ||
B、y=cos(x-
| ||
C、y=cos(x+
| ||
D、y=cos(x-
|
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com