題目列表(包括答案和解析)
(08年寧夏、海南卷文)已知復數,則
( )
A. 2 B. -2 C. 2i D. -2i
(08年寧夏、海南卷文)函數的最小值和最大值分別為( )
A. -3,1 B. -2,2 C. -3, D. -2,
(06年山東卷)已知定義在R上的奇函數f(x)滿足f(x+2)=-f(x),則f(6) 的值為( )
(A) -1 (B)0 (C)1 (D)2
(06年山東卷)在ΔABC中,角A、B、C的對邊分別為a、b、c,已知A=,a=
,b=1,則c=( )
(A)1 (B)2 (C) -1 (D)
(08年上海卷)若數列{an}是首項為1,公比為a-的無窮等比數列,且{an}各項的和為a,則a的值是( )
A.1 B.2 C. D.
一.選擇題:DABBB ACACA
解析:1:由題干可得:故選
.
2:為拋物線
的內部(包括周界),
為動圓
的內部(包括周界).該題的幾何意義是
為何值時,動圓進入區域
,并被
所覆蓋.
是動圓圓心的縱坐標,顯然結論應是
,故可排除
,而當
時,
(可驗證點
到拋物線上點的最小距離為
).故選
.
3:由f(x+2)=-f(x)得f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5),由f(x)是奇函數,得f(-0.5)=-f(0.5)=-0.5,所以選B.
4:取a=100,b=10,此時P=,Q=
=lg
,R=lg55=lg
,比較可知選P
Q
R,所以選B
5: f(x+)=sin[
-2(x+
)]+sin[2(x+
)]=-f(x),而f(x+π)=sin[
-2(x+π)]+sin[2(x+π)]=f(x).所以應選B;
6:在同一直角坐標系中作出圓x+y
=4和直線4x+3y-12=0后,由圖可知距離最小的點在第一象限內,所以選A.
7:不等式的“極限”即方程,則只需驗證x=2,2.5,和3哪個為方程
的根,逐一代入,選C.
8:當正n棱錐的頂點無限趨近于底面正多邊形中心時,則底面正多邊形便為極限狀態,此時棱錐相鄰兩側面所成二面角α→π,且小于π;當棱錐高無限大時,正n棱柱便又是另一極限狀態,此時α→π,且大于
π,故選(A).
9:取滿足題設的特殊函數f(x)=x,g(x)=|x|,則f(b)-f(-a)=a+b,g(a)-g(-b)=a-b,又f(a)-f(-b)=a+b,g(b)-g(-a)=b-a;∴選(C).
10:作直線和圓的圖象,從圖中可以看出:
的取值范圍應選(A).
二.填空題:11、;
12、
;
13、;
14、(x-1)2+(y-1)2=2;15、
;
解析:
11:根據不等式解集的幾何意義,作函數
和
函數的圖象(如圖),從圖上容易得出實數a的取
值范圍是。
12: 應用復數乘法的幾何意義,得
,
于是 故應填
13:中獎號碼的排列方法是: 奇位數字上排不同的奇數有種方法,偶位數字上排偶數的方法有
,從而中獎號碼共有
種,于是中獎面為
故應填
14:解:由得
=
,
,化簡得(x-1)2+(y-1)2=2
15.解:依題意,=2,
5,
=15,
=
三.解答題:
16.解:(1)由,解之得
……………………5分
(2) …………………………9分
…………………………11分
…………………………12分
17.解:(I)的取值為1,3,又
|