日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

解:(Ⅰ)已知式即.故. 查看更多

 

題目列表(包括答案和解析)

已知數列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設 (N*).

①證明:

② 求證:.

【解析】本試題主要考查了數列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于

所以利用放縮法,從此得到結論。

解:(Ⅰ)當時,由.  ……2分

若存在

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數學歸納法)①當時, ,命題成立;

   ②假設時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數,不等式②成立.           ………………10分

②由于

所以

從而.

也即

 

查看答案和解析>>

已知等差數列{an}的首項為4,公差為4,其前n項和為Sn,則數列 {}的前n項和為(  )

 

A.

B.

C.

D.

考點:

數列的求和;等差數列的性質.

專題:

等差數列與等比數列.

分析:

利用等差數列的前n項和即可得出Sn,再利用“裂項求和”即可得出數列 {}的前n項和.

解答:

解:∵Sn=4n+=2n2+2n,

∴數列 {}的前n項和===

故選A.

點評:

熟練掌握等差數列的前n項和公式、“裂項求和”是解題的關鍵.

查看答案和解析>>

已知點),過點作拋物線的切線,切點分別為(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。

中∵直線與曲線相切,且過點,∴,利用求根公式得到結論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數的性質圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率

∴直線的方程為:,又

,即. -----------------7分

∵點到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,    ………10分

當且僅當,即時取等號.

故圓面積的最小值

 

查看答案和解析>>

已知二次函數的二次項系數為,且不等式的解集為,

(1)若方程有兩個相等的根,求的解析式;

(2)若的最大值為正數,求的取值范圍.

【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

設出二次函數的解析式,然后利用判別式得到a的值。

第二問中,

解:(1)∵f(x)+2x>0的解集為(1,3),

   ①

由方程

              ②

∵方程②有兩個相等的根,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故當f(x)的最大值為正數時,實數a的取值范圍是

 

查看答案和解析>>

已知函數

(Ⅰ)求函數的單調區間;

(Ⅱ)設,若對任意,不等式 恒成立,求實數的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區間是(1,3);單調遞減區間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區間是(1,3);單調遞減區間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,

故也是最小值點,所以;            ............6分

當b<1時,

時,

當b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實數b的取值范圍是 

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 一级黄色av片 | 国产精品久久综合 | 久久久久久久成人 | 日韩欧美不卡 | 欧美视频在线观看不卡 | 成人国产精品视频 | 国产乱精品一区二区三区视频了 | 欧美精品久久久久久久久老牛影院 | 99国产精品久久久久久久 | 一本一道久久a久久精品蜜桃 | 99热这里都是精品 | 国产精品久久久久久福利一牛影视 | 亚洲精品免费在线观看 | 亚洲成人精品 | 91一区二区在线 | 国产高清成人久久 | 成人精品一区 | 国产在线一| 欧美电影一区 | 欧美高清视频在线观看 | 亚洲精品无遮挡 | 欧美日韩精品在线观看 | 久久国产精品影视 | 久久精品无码一区二区日韩av | 高清精品自拍亚洲 | 在线不卡日本 | 欧美日韩综合精品 | 日韩中文字幕在线视频 | 成人午夜免费视频 | 亚洲一区中文字幕 | 亚洲一级毛片 | 在线观看黄色av | 亚洲高清视频二区 | 久草成人网 | 一区二区三区播放 | 亚洲成色www久久网站瘦与人 | 国产精品一区二区久久久久 | 一区二区三区四区视频 | 欧美性受 | 国产免费网址 | 国产精品高清在线 |