題目列表(包括答案和解析)
(本小題滿分12分)
甲、乙兩人下中國象棋,乙每局獲勝的概率為.
若甲、乙比賽3局,求乙恰勝2局的概率.
若甲、乙比賽,甲每局獲勝的概率為,和局的概率為
.每局勝者得2分,負者得0分,和局則各得1分,規定積分先達到4分或4分以上者獲獎并終止比賽(若兩人同時達到4分,則兩人都不獲獎),求甲恰好在第3局比賽結束時獲獎的概率.
已知點(
),過點
作拋物線
的切線,切點分別為
、
(其中
).
(Ⅰ)若,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線的方程是
,且以點
為圓心的圓
與直線
相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。
中∵直線與曲線
相切,且過點
,∴
,利用求根公式得到結論先求直線
的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
,借助于函數的性質圓
面積的最小值
(Ⅰ)由可得,
. ------1分
∵直線與曲線
相切,且過點
,∴
,即
,
∴,或
, --------------------3分
同理可得:,或
----------------4分
∵,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,,
,則
的斜率
,
∴直線的方程為:
,又
,
∴,即
. -----------------7分
∵點到直線
的距離即為圓
的半徑,即
,--------------8分
故圓的面積為
. --------------------9分
(Ⅲ)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
, ………10分
∴
,
當且僅當,即
,
時取等號.
故圓面積的最小值
.
日需求量x | 240 | 250 | 260 | 270 | 280 | 290 | 300 |
頻數 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
某售報亭每天以每份0.4元的價格從報社購進若干份報紙,然后以每份1元的價格出售,如果當天賣不完,剩下的報紙以每份0.1元的價格賣給廢品收購站.
(Ⅰ)若售報亭一天購進270份報紙,求當天的利潤(單位:元)關于當天需求量
(單位:份,
)的函數解析式.
(Ⅱ)售報亭記錄了100天報紙的日需求量(單位:份),整理得下表:
日需求量 |
240 |
250 |
260 |
270 |
280 |
290 |
300 |
頻數 |
10 |
20 |
16 |
16 |
15 |
13 |
10 |
以100天記錄的需求量的頻率作為各銷售量發生的概率.
(1)若售報亭一天購進270份報紙,表示當天的利潤(單位:元),求
的數學期望;
(2)若售報亭計劃每天應購進270份或280份報紙,你認為購進270份報紙好,還是購進280份報紙好? 說明理由.
日需求量x | 240 | 250 | 260 | 270 | 280 | 290 | 300 |
頻數 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com